

MarkWest Liberty Gas Gathering Company, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 290-8700 (303) 825-0902 Fax

June 29, 2012

Mr. Mark Wayner, PE Regional Air Quality Manager PA DEP SW Regional Office Pittsburgh, PA 15222

2012

Re: MarkWest Liberty Midstream and Resources L.L.C. Smith Compressor Station Plan Approval Application (PA-63-00968)

Dear Mr. Wayner:

Please find attached the original and two copies of a request for Plan Approval authorization to expand the Smith Compressor Station, which is currently permitted under GP5-63-00968. The modification will include the addition of up to nine (9) Waukesha P9390GSI engines, with an expansion of the flow through the dehydrator to 130 mmscf/d, with a corresponding increase in flow through the storage tanks. With these modifications the equipment and emissions will be identical to the Three Brothers Compressor Station (PA-63-00969). The remaining air emissions units will remain the same. This facility is located in the Smith Township in Washington County, Pennsylvania. The following is included with this submittal:

- Introduction
- Municipal Notifications
- General Information Form
- Compliance Review Form
- Plan Approval Application Form
- Emission Estimates
- Equipment Specifications
- Copy of Existing GP-5 Permit
- \$1700 to cover this Plan Approval Application, included in a previous check for \$3400 for both this and a future application.

Thank you. Should you have any questions about this air application, please call me at (303) 542-0686 or e-mail at <u>nwheldon@markwest.com</u>.

Sincerely.

Rele

Nathan M. Wheldon, PE Sr. Environmental Engineer

Table of Contents

Section 1Introduc	tion
Section 2General Information Fo	orm
Section 3Municipal Notificati	ons
Section 4Compliance Review Fo	orm
Section 5Plan Approval Application Fe	orm
Section 6Emission Estimation	ates
Section 7Equipment Specificati	ons
Section 8Copy of Existing G	P-5

Introduction

Introduction MarkWest Liberty Midstream & Resource, LLC Smith Compressor Station

On March 20, 2012 Markwest Liberty Midstream & Resources, LLC received a GP-5 Permit (GP5-63-00968) and is currently constructing the Smith Compressor Station located in Smith Township, Washington County, PA. This General Permit authorized the construction, installation and operation of the following emission sources:

- Two (2) Waukesha L7042G 1480hp rich burn engines with 3-way catalysts
- Two (2) John Deere 197 hp diesel engines
- One (1) 40MM scfd dehydration unit with a 2.0MM Btu/hr. re-boiler
- One (1) 550bbl gun-barrel separation tank
- Four (4) 400bbl condensate and/or produced water tanks
 - Note: The storage tanks are controlled with a Vapor Recovery Unit (VRU) designed to control 100% of the flashing, breathing and evaporative losses. 98% control is being claimed to account for minor outages, etc...

Recently producers have stated that they will be drilling more in this area thus requiring more compression and dehydration than previously anticipated. After a further review of the projections for this station MarkWest has determined that the following additional changes and additional engines are needed:

- Nine (9) additional Waukesha P9390GSI 1980hp rich burn engines with 3-way catalysts
- An Increase in Dehydration capacity to 130MM scfd

With these changes the Smith station will have identical equipment and emission rates as the Three Brothers Compressor Station. The new Waukesha engines are subject to 40 CFR Part 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Combustion Engines and 40 CFR 63 Subpart ZZZZ for Spark Ignition and Compression Reciprocating Internal Combustion Engines. The diesel engines are subject to 40 CFR 60 Subpart IIII and meets the Tier III standards. The dehydrator is subject to 40 CFR Part 63 Subpart HH, National Emission Standards for hazardous Air Pollutants from Oil and Gas Production Facilities.

With these proposed changes in place the facility will remain a minor source of Air Pollutants. Additionally total GHG CO₂(e) is less than 100,000 metric tons per year and the GHG Tailoring Rule does not apply to this facility.

The following is included with this application:

- Introduction
- General Information Form
- Municipal Notifications
- Compliance History Form
- Plan Approval Application Form
- Emission Estimates
- Manufacturers Specifications
- Payment of \$1700 to cover the application fee.

REGULATORY DISCUSSION

MarkWest Liberty Midstream & Resources L.L.C. has reviewed the regulatory provisions and offers the following discussion regarding applicability to the proposed construction.

FEDERAL

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS: This site does not involve processing and therefore will be exempt from this regulation.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The proposed diesel-fired generator engine meets the Tier 3 requirements for diesel engines as shown in the manufacturers data. No further testing or documentation is required.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The proposed natural gas-fired compressor engines are stationary spark ignition internal combustion engines manufactured after July 1, 2007 and will therefore be subject to this subpart. As such MarkWest is required to make notifications of construction and startup of the engines and follow procedures to perform stack emission test in accordance with the subpart.

40 CFR Part 63 SUBPART HH – NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FROM OIL AND NATURAL GAS PRODUCTION FACILITIES.

The dehydration unit at the facility is potentially subject to Subpart HH. However, potential benzene emissions from the unit are less than 0.90 megagram per year. As such, the only applicable requirement is to keep records showing that the unit continues to comply with the exemption criterion.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES:

The facility will be a minor (area) source of hazardous air pollutants (HAP). The proposed natural gas-fired engines are stationary reciprocating internal combustion engines (RICE) and will commence construction after the June 12, 2006 effective date for new stationary RICE at area sources and are therefore subject to this subpart. The engines will meet requirements by compliance with Subpart JJJJ. No further requirements apply for these engines under this subpart.

General Information Form

8000-PM-IT0001 Rev. 10/2009 Form

DEPARTMENT OF ENVIRONMENTAL PROTECTION

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

GENERAL INFORMATION FORM – AUTHORIZATION APPLICATION

Before completing this General Information Form (GIF), read the step-by-step instructions provided in this application package. This version of the General Information Form (GIF) must be completed and returned with any program-specific application being submitted to the Department.

Related ID#s (If Known)				DEP U	USE ON	LY	
Client ID# 271958	APS ID#	Date Received & General Notes					5
Site ID#	Auth ID#						
Facility ID#							
	CLIENT INF	ORMA	TION	Section Section		ALTER OF	
DEP Client ID# 271958	Client Type / Code OWOP						
Organization Name or Regist	ered Fictitious Name		Employer ID	0#(EIN)	Dun & E	Bradstr	eet ID#
MarkWest Liberty Midstream &	Resources L.L.C.		30-0528059				
Individual Last Name	First Name		MI	Suffix	SSN		
individual Last Name	That Maile		IVII	Julia	001		
Additional Individual Last Na	me First Name		MI	Suffix	SSN		
Mailing Address Line 1		Mailin	g Address Li	ne 2			
1515 Arapahoe Street Tower 1	, Suite 1600						
Address Last Line – City	Sta	te	ZIP+4	Co	untry		
Denver	СО		80202-2137	US	A		
Client Contact Last Name	First Name	9		MI		Su	ITTIX
Wheldon	Nathan					-	
Client Contact Title				Phone	0000	EX	t
Sr. Environmental Engineer	-			(303) 542-	0686	48	0
Email Address				FAX (202) 825	0000		
nwheldon@markwest.com				(303) 825-	0920		
	SITE INFO	DRMAT	ION				
DEP Site ID# Site Name							
Smith Con	pressor Station	of Emplo	waaa ta ha D	recent at S	ito		
EPA ID#	Estimated Number of	of Emplo	byees to be P	resent at 5	ne		
Description of Site							
Natural Gas Processing	Municipality			City	Boro	Twn	Stato
County Name	Smith					M	State
Washington	Municipality			City	Boro	Twn	State
County Name	Municipality						otate
Site Location Line 1		SiteLo	cation Line 2				
South of Hwy 22 West of Poin	t Pleasant Road	0110 20					
Site Location Last Line – City	V	State	ZIP+4				
Smith Township	18	PA	15379				
Detailed Written Directions to	o Site						
From Pittsburgh head west on	Hwy 22 to Exit 60A. stav lef	t o n Ste	ubenville Pike	(0.9 mi.), ta	ake left d	onto Cr	eek Rd
(0.5 mi.), keep left on Point Ple	asant Rd. (0.4 mi.), turn left	onto lea	se road to Sm	ith CS.			
Site Contact Last Name	First Name	9		MI		Su	Iffix
Sullivan	Greg						
Site Contact Title		Site Co	ntact Firm				
Operations Manager							
Mailing Address Line 1		Mailing	Address Lin	e 2			
800 Western Ave							
Mailing Address Last Line –	City	State	ZIP+4				
Washington		PA	15317				

Phone	Ext F	AX	En	nail	Address			
(740) 314-9571			gs	ulliv	an@markwes	t.com		
NAICS Codes (Two- & Thre 211111	ee-Digit Codes -	- List All Tha	at Apply)		6	-Digit Code	(Optional)	
Client to Site Relationshi	р							
		FACILI	TY INFC	RN	ATION			
Modification of Existing	Facility			Creek and			Yes	No
1. Will this project me	odify an existi	ing facility	. svstem.	or a	ctivity?		Π	\boxtimes
2. Will this project inv	volve an addit	ion to an o	existing fa	cili	ty, system, or	activity?		\boxtimes
If "Yes", check all re	levant facility t	vpes and p	orovide DE	P fa	cility identifica	tion numbers	s below.	
Facility Type		DEP Fa	IC ID#	F	acility Type		I	DEP Fac ID#
Air Emission Plant] 1	ndustrial Minerals	Mining Operati	on	
Beneficial Use (water)] L	aboratory Locatio	on	_	
Blasting Operation] L	and Recycling CI	eanup Location		
Captive Hazardous Wast	e Operation] N	AineDrainageTrm	t/LandRecyProj	Location	
Coal Ash Beneficial Use	Operation] N	Aunicipal Waste C	Operation		
Coal Mining Operation			C] (Dil & Gas Encroad	chment Location	·	
Coal Pillar Location			[] (0il & Gas Location	ı	39 <u></u>	
Commercial Hazardous V	Waste Operation] (Dil & Gas Water P	oll Control Faci	lity	
Dam Location		13] F	Public Water Supp	bly System		
Deep Mine Safety Opera	tion -Anthracite			J F	Radiation Facility			
Deep Mine Safety Opera	tion -Bituminous		L		Residual Waste O	peration		
Deep Mine Safety Opera	tion -Ind Minerals		<u>L</u>		Storage Tank Loca	ation	0	
Encroachment Location ((water, wetland)	11 <u>2-11-11-11-11-11-11-11-11-11-11-11-11-11</u>	<u>_</u>	l v	Vater Pollution Co	ontrol Facility		
Erosion & Sediment Con	trol Facility	3	L		vater Resource			
Explosive Storage Locati	on	1	1 - 414		Other:		Longitud	
Latitude/Longit	ude		Latitu	ae	0	Deserves	Longitude	Casanda
Point of Origi	in	Degree	s Minu	tes	Seconds	Degrees	Minutes	Seconds
		40	25		04	80	21	24
Horizontal Accuracy Mea	asure	Feet			or	Me	ters	
Horizontal Reference Da	tum Code		lorth Amer	ican	Datum of 192	27		
			lorth Amer	ican	Datum of 198	83		
Herizentel Collection Mo	thad Cada		vona Geod	letic	System of 19	04		
Horizontal Collection Me	thoa Coae							
Reference Point Code		Foot	1165		or	Mo	tore	
Altitude		Feet	1155	10	0/	IVIE		
Altitude Datum Name		님 ¦	he Nationa		ricon Vortical	Datum of 199	1929 88 (NAVD88	1
Altitude (Vertical) Locati	on Datum Col	lection Me	athod Cod	P	ican ventical i	Datum or 190		/
Geometric Type Code	on Datam oor			•				
Data Collection Date								
Source Man Scale Numb	er		Inch(e	25)	=		Feet	
Source map scale runns	07		Centi	met	er(s) =		Mete	rs
		PROJE	ECT INFO	DRI	MATION			
Project Name								
Smith Compressor Station								
Project Description								
Construct and operate add	ditional nine W	aukesha P	9390GSI e	engi	nes and increa	ase dehydrat	or flow to 13	0 mmscfd.
Project Consultant Last	Name	F	First Name)		MI	Su	ffix
Project Consultant Title			(Con	sulting Firm			
				1	ing Address	line 2		
Mailing Address Line 1			I	viail	ing Address	Line 2		
Address Last Line – City			5	Stat	e	ZIF	P+4	

8000-PM-IT0001 Rev. 10/2009

Pho	ne	Ext	FAX	Email Address				
Time	e Schedules	Project	Milestone (Opt	tional)				
Marc	ch 2012	Begin to	operate addition	nal engines				
1.	Have you info	rmed the	surrounding	community and addressed any ion to the Department?		Yes	\boxtimes	No
2.	ls vour project f	unded by	state or federal	grants?		Yes	\boxtimes	No
	Grant Sou Grant Con Grant Exp	irce: tact Person iration Date	:					
3.	Is this application Policy? (For r attached to GIF Note: If "No" to C If "Yes" to guestions	on for an eferenced instruction Question 3, Question 3, in the Land	authorization list, see App ns) the application is r the application is Use Information	on Appendix A of the Land Use endix A of the Land Use Policy not subject to the Land Use Policy. subject to this policy and the Applicant sh section.	⊔ ould ar	res	e additic	onal
		C. Salar	LAND	USE INFORMATION				
Note	e: Applicants are e	ncouraged	I to submit copie ning ordinances.	s of local land use approvals or othe	r evide	ence of	compli	ance wit
1.	Is there an adop	ted count	y or multi-coun	ty comprehensive plan?	\boxtimes	Yes		No
2.	Is there an adop	ted munic	ipal or multi-m	unicipal comprehensive plan?	\boxtimes	Yes		No
3.	Is there an ad ordinance or joi Note: If the App the Applic	opted co nt municip licant answe ant does no	unty-wide zon bal zoning ordir ers "No" to either (t need to respond	ing ordinance, municipal zoning nance? Questions 1, 2 or 3, the provisions of the to questions 4 and 5 below.	⊠ PA MP	Yes Care no	D ot applie	No cable and
	If the App	licant answe	ers "Yes" to question	ons 1, 2 and 3, the Applicant should respo	nd to q	uestions	4 and	5 below.
4.	Does the proposition does the proposition of the pr	sed project sed project ocumentation	ct meet the pro t have zoning a n.	visions of the zoning ordinance or approval? If zoning approval has been		Yes		No
5.	Have you attach Will provide infor	ed Munici mation upo	ipal and County on request.	Land Use Letters for the project?		Yes	\boxtimes	No

COORDINATION INFORMATION

<u>Note</u>: The PA Historical and Museum Commission must be notified of proposed projects in accordance with DEP Technical Guidance Document 012-0700-001 and the accompanying Cultural Resource Notice Form.

If the activity will be a mining project (i.e., mining of coal or industrial minerals, coal refuse disposal and/or the operation of a coal or industrial minerals preparation/processing facility), respond to questions 1.0 through 2.5 below.

If the activity will not be a mining project, skip questions 1.0 through 2.5 and begin with question 3.0.

1.0	Is this a coal mining project? If "Yes", respond to 1.1-1.6. If "No", skip to Question 2.0. (DEP Use/48y1)		Yes	\boxtimes	No
1.1	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be equal to or greater than 200 tons/day? (DEP Use/4x70)		Yes		No
1.2	Will this coal mining project involve coal preparation/ processing activities in which the total amount of coal prepared/processed will be greater than 50,000 tons/year? (DEP Use/4x70)		Yes		No
1.3	Will this coal mining project involve coal preparation/ processing activities in which thermal coal dryers or pneumatic coal cleaners will be used? (DEP Use/4x70)		Yes		No
1.4	For this coal mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters? (DEP Use/4x62)		Yes		No
1.5	Will this coal mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet? (DEP Use/3140)		Yes		No
1.6	Will this coal mining project involve underground coal mining to be conducted within 500 feet of an oil or gas well? (DEP Use/4z41)		Yes		No
2.0	Is this a non-coal (industrial minerals) mining project? If "Yes", respond to 2.1-2.6. If "No", skip to Question 3.0. (DEP Use/48y1)		Yes		No
2.1	Will this non-coal (industrial minerals) mining project involve the crushing and screening of non-coal minerals other than sand and gravel? (DEP Use/4x70)		Yes		No
2.2	Will this non-coal (industrial minerals) mining project involve the crushing and/or screening of sand and gravel with the exception of wet sand and gravel operations (screening only) and dry sand and gravel operations with a capacity of less than 150 tons/hour of unconsolidated materials? (DEP Use/4x70)		Yes		No
2.3	Will this non-coal (industrial minerals) mining project involve the construction, operation and/or modification of a portable non-metallic (i.e., non-coal) minerals processing plant under the authority of the General Permit for Portable Non-metallic Mineral Processing Plants (i.e., BAQ-PGPA/GP-3)? (DEP Use/4x70)	0	Yes		No
2.4	For this non-coal (industrial minerals) mining project, will sewage treatment facilities be constructed and treated waste water discharged to surface waters? (DEP Use/4x62)		Yes		No
2.5	Will this non-coal (industrial minerals) mining project involve the construction of a permanent impoundment meeting one or more of the following criteria: (1) a contributory drainage area exceeding 100 acres; (2) a depth of water measured by the upstream toe of the dam at maximum storage elevation exceeding 15 feet; (3) an impounding capacity at maximum storage elevation exceeding 50 acre-feet? (DEP Use/3140)		Yes		No

3.0	Will your project, activity, or authorization have anything to do with a well related to oil or gas production, have construction within 200 feet of, affect an oil or gas well, involve the waste from such a well, or string power lines above an oil or gas well? If "Yes", respond to 3.1-3.3. If "No", skip to Question 4.0. (DEP Use/4z41)		Yes		No
3.1	Does the oil- or gas-related project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a watercourse, floodway or body of water (including wetlands)? (DEP Use/4z41)		Yes		No
3.2	Will the oil- or gas-related project involve discharge of industrial wastewater or stormwater to a dry swale, surface water, ground water or an existing sanitary sewer system or storm water system? If "Yes", discuss in <i>Project Description</i> . (DEP Use/4z41)		Yes	\boxtimes	No
3.3	Will the oil- or gas-related project involve the construction and operation of industrial waste treatment facilities? (DEP Use/4z41)		Yes	\boxtimes	No
4.0	Will the project involve a construction activity that results in earth disturbance? If "Yes", specify the total disturbed acreage. (DEP Use/4x66) 4.0.1 Total Disturbed Acreage		Yes	Ø	No
5.0	Does the project involve any of the following? If "Yes", respond to 5.1-5.3. If "No", skip to Question 6.0. (DEP Use/4x10)		Yes	Ø	No
5.1	Water Obstruction and Encroachment Projects – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a watercourse, floodway or body of water? (DEP Use /4x10).		Yes		Νο
5.2	Wetland Impacts – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a wetland? (DEP Use/4x10).	Ĺ	Yes	\boxtimes	No
5.3	Floodplain Projects by the commonwealth, a Political Subdivision of the commonwealth or a Public Utility – Does the project involve any of the following: placement of fill, excavation within or placement of a structure, located in, along, across or projecting into a floodplain? (DEP		Yes		No
6.0	Will the project involve discharge of stormwater or wastewater from an industrial activity to a dry swale, surface water, ground water or an existing sanitary sewer system or separate storm water system? (DEP Use/4x62)		Yes	Ø	No
7.0	Will the project involve the construction and operation of industrial waste treatment facilities? (DEP Use/4x62)		Yes	Ø	No
8.0	Will the project involve construction of sewage treatment facilities, sanitary sewers, or sewage pumping stations? If "Yes", indicate estimated proposed flow (gal/day). Also, discuss the sanitary sewer pipe sizes and the number of pumping stations/treatment facilities/name of downstream sewage facilities in the <i>Project Description</i> , where applicable. (DEP Use/4x62) 8.0.1 Estimated Proposed Flow (gal/day)		Yes		No
9.0	Will the project involve the subdivision of land, or the generation of 800 gpd or more of sewage on an existing parcel of land or the generation of an additional 400 gpd of sewage on an already-developed parcel, or the generation of 800 gpd or more of industrial wastewater that would be discharged to an existing sanitary sewer system? (DEP Lise/4y61)		Yes	Ø	No
	9.0.1 Was Act 537 sewage facilities planning submitted and approved by DEP? If "Yes" attach the approval letter. Approval required prior to 105/NPDES approval.		Yes		No
10.0	Is this project for the beneficial use of biosolids for land application within Pennsylvania? If "Yes" indicate how much (i.e. gallons or dry tons per year). (DEP Use/4X62) 10.0.1 Gallons Per Year (residential septage)		Yes	X	No
	1U.U.Z UTV I ONS PER TEAR (DIOSOIIDS)				

11.0	Does the project involve construction, modification or removal of a dam? If "Yes", identify the dam. (DEP Use/3140) 11.0.1 Dam Name		Yes		No
12.0	Will the project interfere with the flow from, or otherwise impact, a dam?If "Yes", identify the dam. (DEP Use/3140)12.0.1Dam Name		Yes		No
13.0	 Will the project involve operations (excluding during the construction period) that produce air emissions (i.e., NOX, VOC, etc.)? If "Yes", identify each type of emission followed by the amount of that emission. (DEP Use/4x70) 13.0.1 Enter all types & amounts of emissions; separate each set with semicolons. 	×	Yes		No
14.0	Does the project include the construction or modification of a drinking water supply to serve 15 or more connections or 25 or more people, at least 60 days out of the year? If "Yes", check all proposed sub-facilities. (DEP Use/4x81) 14.0.1 Number of Persons Served 14.0.2 Number of Employee/Guests		Yes		No
	14.0.3 Number of Connections				
	14.0.4 Sub-Fac: Distribution System		Yes		No
	14.0.5 Sub-Fac: Water Treatment Plant		Yes		No
	14.0.6 Sub-Fac: Source		Yes		No
	14.0.7 Sub-Fac: Pump Station	Ц	Yes	Ц	No
	14.0.8 SUD Fac: I ransmission Main	Н	Tes	П	NO
15.0	Will your project include infiltration of storm water or waste water to		Yes		No
13.0	ground water within one-half mile of a public water supply well, spring or infiltration gallery? (DEP Use/4x81) and 4x52).				
16.0	Is your project to be served by an existing public water supply? If "Yes", indicate name of supplier and attach letter from supplier stating that it will serve the project. (DEP Use/4x81) 16.0.1 Supplier's Name		Yes	\boxtimes	No
	16.0.2 Letter of Approval from Supplier is Attached		Yes		No
17.0	Will this project involve a new or increased drinking water withdrawalfrom a stream or other water body?If "Yes", should reference both WaterSupply and Watershed Management. (DEP Use/4x81 and 4x10)17.0.1Stream Name		Yes	\boxtimes	No
18.0	Will the construction or operation of this project involve treatment, storage, reuse, or disposal of waste? If "Yes", indicate what type (i.e., hazardous, municipal (including infectious & chemotherapeutic), residual) and the amount to be treated, stored, re-used or disposed. (DEP/Use4x32) 18.0.1 Type & Amount		Yes	Ø	No
19.0	Will your project involve the removal of coal, minerals, etc. as part of any earth disturbance activities? (DEP Use/48y1)		Yes	\boxtimes	No
20.0	Does your project involve installation of a field constructed undergroundstorage tank? If "Yes", list each Substance & its Capacity. Note: Applicantmay need a Storage Tank Site Specific Installation Permit. (DEP Use/2570)20.0.1Enter all substances & capacity of each; separate each set with semicolons.		Yes		No
21.0	Does your project involve installation of an aboveground storage tank greater than 21,000 gallons capacity at an existing facility? If "Yes", list each Substance & its Capacity. Note: Applicant may need a Storage Tank Site Specific Installation Permit. (DEP Use/2570) 21.0.1 Enter all substances & capacity of each; separate each set with semicolons		Yes		No

s 🗆	Yes	\boxtimes	No
s			
h			
е			
у 🗆	Yes	\boxtimes	No
h			
е			
P 🗆	Yes	\boxtimes	No
p	pplicar	pplicant name	pplicant named here

that the information provided in this application is true and correct to the best of my knowledge and information. Leanne Meyer

Type or Print Name

an Signature

VP EH&S

Title

6 · 28 · 12 Date

Municipal Notifications

MarkWest Liberty Midstream and Resources, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 290-8700 (303) 825-0902 Fax

May 21, 2012

Certified Mail #: 7010 3090 0002 9932 4566

Smith Township Supervisors P.O. Box 94 Slovan, PA. 15078

Re: MarkWest Liberty Midstream and Resources L.L.C. Air Quality Plan Approval Application Smith Compressor Station

Dear Commissioners:

This letter is being sent to notify County Officials that MarkWest Liberty Midstream and Resources, L.L.C. will be applying to PADEP for an Air Quality Plan Approval to install up to nine (9) 1,980 hp Waukesha P9390GSI rich burn engines with Non-Selective Catalytic Control to reduce NOx, CO, VOC, and Formaldehyde emissions. These engines will be in addition to two (2) 1,480 hp Waukesha L7042 engines that are already permitted for. Additional equipment at the site will include a dehydration unit capable of 130 mmscf/d, a 2.0 mmbtu/hr reboiler, two 197-hp diesel engine for power, and storage tanks consisting of a 500-bbl bullet separation tanks and (4) 400-bbl tanks for storing condensate/produced water all controlled with a vapor recovery unit (VRU). The site will be located south of Highway 22 and west of Point Pleasant Road in Smith Township. The source will remain a minor source of air pollutants as defined by the Clean Air Act. This notice is being provided in accordance with the Municipal Notification requirements in 25 PA Code Section 127.43a and by Section 1905-A of the Administrative Code as amended by Act 14 in 1984. This activity is allowed in the area and thus there are no land use issues under Acts 67 and 68.

Anyone wishing to view this application may do so by making arrangements with:

PA Department of Environmental Protection Southwest Regional Office 400 Waterfront Drive Pittsburgh, PA. 15222 (412) 442-4000

Those wishing to make comments to the PADEP on this proposal must do so within 30 days of receipt of this notice.

Thank you. Should you have any questions, please call me at (303) 542-0686 or e-mail at nwheldon@markwest.com.

Nathan M. Wheldon, PE Sr. Environmental Engineer

MarkWest Liberty Midstream and Resources, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 290-8700 (303) 825-0902 Fax

May 21, 2012

Certified Mail #: 7010 3090 0002 9932 4559

Office of the Commissioners Washington County Courthouse Square, Suite 702 Washington, PA 15301

Re: MarkWest Liberty Midstream and Resources L.L.C. Air Quality Plan Approval Application Smith Compressor Station

Dear Commissioners:

This letter is being sent to notify County Officials that MarkWest Liberty Midstream and Resources, L.L.C. will be applying to PADEP for an Air Quality Plan Approval to install up to nine (9) 1,980 hp Waukesha P9390GSI rich burn engines with Non-Selective Catalytic Control to reduce NOx, CO, VOC, and Formaldehyde emissions. These engines will be in addition to two (2) 1,480 hp Waukesha L7042 engines that are already permitted for. Additional equipment at the site will include a dehydration unit capable of 130 mmscf/d, a 2.0 mmbtu/hr reboiler, two 197-hp diesel engine for power, and storage tanks consisting of a 500-bbl bullet separation tanks and (4) 400-bbl tanks for storing condensate/produced water all controlled with a vapor recovery unit (VRU). The site will be located south of Highway 22 and west of Point Pleasant Road in Smith Township. The source will remain a minor source of air pollutants as defined by the Clean Air Act. This notice is being provided in accordance with the Municipal Notification requirements in 25 PA Code Section 127.43a and by Section 1905-A of the Administrative Code as amended by Act 14 in 1984. This activity is allowed in the area and thus there are no land use issues under Acts 67 and 68.

Anyone wishing to view this application may do so by making arrangements with:

PA Department of Environmental Protection Southwest Regional Office 400 Waterfront Drive Pittsburgh, PA. 15222 (412) 442-4000

Those wishing to make comments to the PADEP on this proposal must do so within 30 days of receipt of this notice.

Thank you. Should you have any questions, please call me at (303) 542-0686 or e-mail at nwheldon@markwest.com.

alles

Nathan M. Wheldon, PE Sr. Environmental Engineer

Compliance Review Form

2700-PM-AQ0004	Rev. 6/2006
WHE BEN	
MON M	

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

AIR POLLUTION CONTROL ACT COMPLIANCE REVIEW FORM

Fully and accu	Fully and accurately provide the following information, as specified. Attach additional sheets as necessary.						
Type of Comp	liance Review Form Submittal (check all that apply)						
Driginal F	iling Date of Last Compliance Review Form Filing:						
Amended	l Filing May 1, 2012						
Type of Subm	ittal						
New Plan	Approval New Operating Permit Renewal of Operating Permit						
Extension	n of Plan Approval 📋 Change of Ownership 📋 Periodic Submission (@ 6 mos)						
Other:							
	SECTION A. GENERAL APPLICATION INFORMATION						
Name of Appl	icant/Permittee/("applicant") ions-attach documentation of legal name)						
MarkWest Libe	erty Midstream and Resources, L.L.C.						
Address	1515 Arapahoe Street, Tower 1, Suite 1600						
	Denver, CO. 80202-2137						
Telephone	(303) 825-9200 Taxpayer ID# 30-0528059						
Permit, Plan A	Approval or Application ID#						
Identify the fo	rm of management under which the applicant conducts its business (check appropriate						
DOX)							
	rship						
Public Co	propration Partnership Other Type of Business, specify below:						
Private C	orporation Limited Partnership						
Describe belo	w the type(s) of business activities performed.						
MarkWest Libe	erty Midstream and Resources, L.L.C. is a natural gas gathering and processing company.						
1							

SECTION B. GENERAL INFORMATION REGARDING "APPLICANT"

If applicant is a corporation or a division or other unit of a corporation, provide the names, principal places of business, state of incorporation, and taxpayer ID numbers of all domestic and foreign parent corporations (including the ultimate parent corporation), and all domestic and foreign subsidiary corporations of the ultimate parent corporation with operations in Pennsylvania. Please include all corporate divisions or units, (whether incorporated or unincorporated) and privately held corporations. (A diagram of corporate relationships may be provided to illustrate corporate relationships.) Attach additional sheets as necessary.

Principal Places of Business	State of Incorporation	Taxpayer ID	Relationship to Applicant
-			
	Principal Places of Business	Principal Places of Business State of Incorporation Incorporation Incorporation	Principal Places of Business State of Incorporation Taxpayer ID Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State of Incorporation Image: State of Business Image: State of Incorporation Image: State o

SECTION C. SPECIFIC INFORMATION REGARDING APPLICANT AND ITS "RELATED PARTIES"

Pennsylvania Facilities. List the name and location (mailing address, municipality, county), telephone number, and relationship to applicant (parent, subsidiary or general partner) of applicant and all Related Parties' places of business, and facilities in Pennsylvania. Attach additional sheets as necessary.

Unit Name	Street Address	County and Municipality	Telephone No.	Relationship to Applicant
	11. T			

Provide the names and business addresses of all general partners of the applicant and parent and subsidiary corporations, if any.

Name	Business Address
MarkWest Liberty Gas Gathering, L.L.C.	601 Technology Dr., Suite 130, Canonsburg, PA. 15317
NGP Midstream and Resources, L.P.	1401 McKinney St., Suite 1025, Houston, TX. 77010
MarkWest Energy Operating Company, L.L.C	1515 Arapahoe St., Tower 1, Suite 1600, Denver, CO. 80202-2137
MarkWest Energy Partners, L.P.	1515 Arapahoe St., Tower 1, Suite 1600, Denver, CO. 80202-2137

being permitted (i.e.	. plant manager).	persons with overall manag	Jement responsibilit	y for the process				
Nar	ne	Business Address						
Greg Sullivan, Opera	tions Manager 8	300 Western Ave., Washingto	n, PA. 15301					
Brian Rayburn, Area Manager		01 Technology Dr., Suite 130	, Canonsburg, PA. 1	5317				
Leanne Meyer, VP of	EH&S 1	515 Arapahoe St., Tower 1, S	Suite 1600, Denver, C	O 80202-2137				
<u> </u>								
Plan Approvals or	Operating Permits.	List all plan approvals of	or operating permit	s issued by the				
Department or an a	pproved local air pollu	ution control agency under	the APCA to the ap	plicant or related				
parties that are curr	ently in effect or have	been in effect at any time 5	years prior to the d	ate on which this				
form is notarized.	This list shall includ	e the plan approval and o	perating permit nu	mbers, locations,				
issuance and expira	ition dates. Attach ad	ditional sneets as necessar	y.					
Air Contamination Source	Plan Approval/	Location	Issuance Date	Expiration Date				
Houston Gas Plant	GP and PA 63-00936	Chartiers Twp.,Wash. Co.	12/2011					
Lowry Station	SOOP & GP5 63-	Hopewell Twp.,Wash. Co.	12/2011					
Hoskins Station	00947 GP5 63-00938	Blaine Twn Wash Co	05/2011					
Dover Station	GP5 63-00942	Ind Two Wash Co	09/2011					
Stewart Station	GP5 63-00939	Mt Pleasant Two Wash	12/2010					
Stewart Station		Co.	12/2010					
Shaw Station	GP5 63-00940	Chartiers Twp.,Wash. Co.	08/2011					
Godwin Station	GP5 63-00934	Canton Twp., Wash. Co.	08/2011					
Fulton Station	GP5 63-00937	Mt. Pleasant Twp., Wash. Co.	05/2010					
Johnston Station	GP5 63-00933	Chartiers Twp.,Wash. Co.	07/2011					
Tupta Day Station (Bedillion Day)	GP5 63-00948	Amwell Twp., Wash. Co.	01/2012					
Brigich Station	GP5 63-00954	Chartiers Twp, Wash. Co.	09/2010					
Welling Station	GP5 63-00958	Buffalo Twp, Wash. Co.	09/2010					
Baker Station	GP5 63-00960	Amwell Twp., Wash Co.	04/2011					
Redd Station	GP5 63-00962	Amwell Twp., Wash Co.	05/2011					
Three Brothers	GP5 63-00969	Smith Twp., Wash Co.	12/2011					

Compliance Background. (Note: Copies of specific documents, if applicable, must be made available to the Department upon its request.) List all documented conduct of violations or enforcement actions identified by the Department pursuant to the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. Attach additional sheets as necessary. See the definition of "documented conduct" for further clarification. Unless specifically directed by the Department, deviations which have been previously reported to the Department in writing, relating to monitoring and reporting, need not be reported.

Date	Location	Plan Approval/ Operating Permit#	Nature of Documented Conduct	Type of Department Action	Status: Litigation Existing/Continuing or Corrected/Date	Dollar Amount Penalty
						\$
				-		\$
						\$
						\$
			Î			\$

List all incidents of deviations of the APCA, regulations, terms and conditions of an operating permit or plan approval or order by applicant or any related party, using the following format grouped by source and location in reverse chronological order. This list must include items both currently known and unknown to the Department. Attach additional sheets as necessary. See the definition of "deviations" for further clarification.

Date	Location	Plan Approval/ Operating Permit#	Nature of Deviation	Incident Status: Litigation Existing/Continuing Or Corrected/Date
			<u></u>	
				
CONTINUING Compliance F submission an	OBLIGATION. Applica Review Supplemental Ind Department action or	nt is under a continuin Form if any additiona the application.	g obligation to up I deviations occu	date this form using the ir between the date of

2700-PM-AQ0004 Rev. 6/2006

VERIFICATION STATEMENT

Subject to the penalties of Title 18 Pa.C.S. Section 4904 and 35 P.S. Section 4009(b)(2), I verify under penalty of law that I am authorized to make this verification on behalf of the Applicant/Permittee. I further verify that the information contained in this Compliance Review Form is true and complete to the best of my belief formed after reasonable inquiry. I further verify that reasonable procedures are in place to ensure that "documented conduct" and "deviations" as defined in 25 Pa Code Section 121.1 are identified and included in the information set forth in this Compliance Review Form.

Signature

6.28.12 Date

Leanne Meyer

Name (Print or Type)

VP of EH&S

Title

Plan Approval Application Form

2700-PM-AQ0007 Rev. 7/2004

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF AIR QUALITY

PROCESSES

Application for Plan Approval to Construct, Modify or Reactivate an Air Contamination Source and/or Install an Air Cleaning Device

This application must be submitted with the General Information Form (GIF).

Before completing this form, read the instructions provided for the form.

Section A - Fac	ility Name, Check	list And Certifi	cation
Organization Name or Registered Fictitious Na DEP Client ID# (if known): 271958	me/Facility Name: Ma	rkWest Liberty Mid	stream & Resources LLC
Type of Review required and Fees:			
 Source which is not subject to NSPS, Source requiring approval under NSP Source requiring approval under NSR Source requiring the establishment of Source requiring approval under PSD 	NESHAPs, MACT, N S or NESHAPS or bol regulations: a MACT limitation:	SR and PSD: h:	\$\$ \$ <u>1,700.00</u> \$ \$ \$
	Applicant's Che	cklist	
Check the following list to n	nake sure that all the	required docume	ents are included.
General Information Form (GIF)			
Processes Plan Approval Applica	tion		
Compliance Review Form or pro facilities submitting on a periodic ba	ovide reference of m sis:	ost recently subm	itted compliance review form for
Copy and Proof of County and M	unicipal Notification		
Permit Fees			
Addendum A: Source Applicable R	Requirements (only ar	plicable to existing	Title V facility)
Certification of Truth, Accu	racy and Comple	teness by a Re	sponsible Official
L Leanne Meyer	certify under pen	alty of law in 18 Pa	C S A \$4904 and
35 P.S. 84009(b) (2) that based on information	_, and belief formed af	er reasonable inqu	irv the statements and information
in this application are true, accurate and compl	ete.	or rouconable inqu	
(Signature): Name Meles	lan Da	te:6 · .	28.12
Name (Print): Leanne Meyer	Tit	e: VP of EH&S	
	OFFICIAL USE O	NLY	
Application No	Unit ID	Site	e ID
DEP Client ID #:	APS. ID	AU	TH. ID
Date Received	Date Assigned	Re	viewed By
Date of 1 st Technical Deficiency	Da	te of 2 nd Technical	Deficiency
Comments:			

		S	ection B	- Pro	cesses Informat	ion		
1. Source Infor	mation							
Source Description	(give type,	use, raw	materials, p	product	, etc). Attach additio	nal sheets as	s necessary.	
Modification to exist	ting GP5-6	53-00968	to add the f	ollowin	g equipment:			
1. Addition of up to	9 Waukesl	ha P93900	GSI engines	s with 3	-way catalysts			
2 Increase of dehv	dration car	acity to 1	30MM ofd					
Manufacturer			N	Adel N	ю.	Num	ber of Sources	
1. Waukesha			P	9390G	SI	5 (ne	W)	
2. NATCO						1 (ex	isting capacity increase)	
Design the		,				Data	d Oanacity	
Source Designation	l Station		1	20MAM	m Capacity	130	d Capacity	
Type of Material Br	ocessed			30141141		1 100K		
Natural Gas (dehvd	rated and (compress	ed at site)					
Maximum Operati	na Schedu	ile.						
		Dave/Ma	ok		Davs/Vear		Hours/Year	
		7	C.		365		8760	
Operational restrict	ions existin	ig or reque	ested, if any	y (e.g.,	bottlenecks or volunt	ary restrictio	ns to limit PTE)	
Capacity (specify	units)							
Per Hour		Per Day		Per Week			Per Year	
5.42MM cf		130MM c	:f	910MM cf			47,320MM cf	
Operating Schedu	le							
Hours/Day		Days/We	ek	Days/Year				
24		/ 		305			8760	
Seasonal variations	<u>s (ivionuns)</u>				10			
	riations							
10 364301141 44	nations							
2. Fuel						0/ 4-6		
Type		ntity Iriv	Annua	llv	Sulfur	% ASN (Weight)	BTIL Content	
	0.0		Allilua	ily	Juliu	(Weight)	137 380 Btu/Gal &	
Diesel additional	0.0	60°F	75 34	X 10 ³	I SD% by wt		1.bs./Gal. @ 60 °F	
Dieser additional			10.04	Gal				
Oil Number		GPH @					Btu/Gal. &	
		60°F		X 10 ³	% by wt		Lbs./Gal. @ 60 °F	
				Gal				
Natural Gas								
	~150,00	00 SCFH	1314	X 10°	0 grain/100 SCF		~1100 Btu/SCF	
0				SCF				
Gas (other)		SOFU		V 10 ⁶	arain/100		Btu/SCE	
		SUFF		SCE	SCF		BlarSei	
Coal		ТРН			% hv wt		Btu/lb	
					<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Other *			·····					
*Noto: Describe	d furnish i	nformation	enaratal	for all	ar fuels in Addendur	n B		
- Note: Describe ar	ia turnisn li	mormation	i separately		iei iueis ili Addendur	11 D.		

-			
rners			
· · · · · · · · · · · · · · · · · · ·			
Vapor press. of liquid at storage temp. (psia/kPa)			
Filling Rate (gal./min.): 1.76			
·····			
 al".			

Section B - Processes Information (Continued)

Miscellaneous Information 6.

Attach flow diagram of process giving all (gaseous, liquid and solid) flow rates. Also, list all raw materials charged to process equipment, and the amounts charged (tons/hour, etc.) at rated capacity (give maximum, minimum and average charges describing fully expected variations in production rates). Indicate (on diagram) all points where contaminants are controlled (location of water sprays, collection hoods, or other pickup points, etc.). Describe collection hoods location, design, airflow and capture efficiency. Describe any restriction requested and how it will be monitored.

Describe fully the facilities provided to monitor and to record process operating conditions, which may affect the emission of air contaminants. Show that they are reasonable and adequate.

All sources will be monitored in conjunction with the entire plant operation. Records of gas processed will be kept electronically.

Describe each proposed modification to an existing source. This application will add to GP5 63-00968 by adding up to 9 additional Waukesha engines, and flow through the dehydrator to a capacity of130MM cfd.

Identify and describe all fugitive emission points, all relief and emergency valves and any by-pass stacks. Fugitive leaks and tank emissions are estimated and included in Section 6 (EmissionEstimates)

Describe how emissions will be minimized especially during start up, shut down, process upsets and/or disruptions. Facility plans on operating 8760 hrs/yr.

Anticipated Milestones:

ü.

Expected commencement date of construction/reconstruction/installation: İ. Expected completion date of construction/reconstruction/installation:

December 2012 March 2012 March 2012

iii. Anticipated date of start-up:

2700-PM-AQ0007 Rev. 7/2004

NOV 1 4 2012

Section C - Air Cleaning Device								
1. Precontrol Emiss	sions*		IE	IEPT ENVIROND	and the second sec			
		Maximum	Emission Rate		Calculation/			
Pollutant	Specify Units	Pounds/Hour	Hours/Year	Tons/Year	Estimation Method			
PM								
PM ₁₀		1.28	8760	5.5	mfg/AP-42			
SO _x		neg.	8760	neg.	gas content			
CO		13.04	8760	56.9	mfg.			
NO _x		11.42	8760	50.1	mfg.			
VOC		10.03	8760	43.8	GRI/HYSYS/mf g.			
Others: (e.g., HAPs)								
НСОН		0.43	8760	1.90	mfg.			
Other HAPs				2.83	GRI etc.			
 * These emissions must schedule for maximum values were determin 	st be calculated bas m limits or restricted ed. Attach calculation	ed on the request hours of operations.	ed operating schedul n and/or restricted the	e and/or process roughput. Descril	rate, e.g., operating be how the emission			
2. Gas Cooling								
Water quenching	Yes 🗌 No	Water injection ra	te	GPM				
Radiation and convectio	n cooling		Air dilution] Yes 🗌 No CFM				
Forced Draft Yes	🗌 No		Water cooled duct wo	rk 🗌 Yes	🗌 No			
Other								
Inlet Volume	ACFM		Outlet Volume	ACF	M			
@°F	% Moisture		@°F% Moisture					
Describe the system in a	detail.							

Section C - Air Cleaning Device (Continued)							
3. Settling Chambers							
Manufacturer not applicable	Anufacturer Volume of gas handled not applicableACFI @°F			Gas velocity	(ft/sec.)		
Length of chamber (ft.)	Width of	chamber (ft.)	Height of chamb	ber (ft.)	Number of trays		
Water injection Yes [] No		Water injection	rate (GPM)			
Emissions Data							
Inlet		Ou	tlet	R	emoval Efficiency (%)		
				,			
4. Inertial and Cyclone Co	ollectors	·					
Manufacturer		Туре		Model N	0.		
Pressure drop (in, of water)		Inlet volume	ACFM	Outlet vo	olume ACFM		
		@	°F		@°F		
Number of individual cyclone(s)	L Outlet straightenir		ning vanes us			
	-,			No			
Length of Cyclone(s) Cylinder	(ft.)	Diameter of Cyclone(s) Cylinder (ft.)		Length o	Length of Cyclone(s) cone (ft.)		
Inlet Diameter (ft.) or duct area	clone(s) Outlet Diameter (ft.) or duct area (ft. ²) of cyclone(rea (ft. ²) of cyclone(s)				
If a multi-clone or multi-tube u	nit is instal	led, will any of the ind	lividual cyclones o	or cyclone tub	es be blanked or blocked off?		
Describe any exhaust gas recirculation loop to be employed.							
Attach particle size efficiency curve							
Emissions Data				· · · · · · · · · · · · · · · · · · ·			
Inlet		Ou	tlet	R	emoval Efficiency (%)		
			· · · · · · · · · · · · · · · · · · ·				

2700-PM-AQ0007 Rev. 7/2004

	Section	n C - Air Clea	ning	g Device (Conti	nued)	
5. Fabric Collector						
Equipment Specifications						
Manufacturer not applicable			Мос	lei No.		Pressurized Design Suction Design
Number of Compartments	1	Number of Filter	s Per	Compartment	Is Baghouse	Insulated?
					🗌 Yes	🗌 No
Can each compartment be iso	blated for rep	airs and/or filter	repla	cement?	🗌 Yes	🗌 No
Are temperature controls prov	ided? (Desci	ribe in detail)			Yes	No
Dew point at maximum moistu	ure	°F		Design inlet volume	· · · · · · · · · · · · · · · · · · ·	SCFM
Type of Fabric						
Material	÷	Felted		🗌 Membra	ne	
Weight	_oz/sq.yd	🗌 Wover	า	Others:	List:	
Thickness	in		-Wov	en		
Fabric permeability (clean) @	1⁄2" water-∆ I	Ρ		_CFM/sq.ft.		
Filter dimensions Length _		Diame	eter/V	Vidth		
Effective area per filter			I	Maximum operating	temperature	(°F)
Effective air to cloth ratio	Minimum	۱ <u> </u>	_ 1	Maximum		
Drawing of Fabric Filter A sketch of the fabric filter s and temperature indicator s	showing all a hould be atta	access doors, ca ached.	atwaik	ks, ladders and exh	aust ductwork	, location of each pressur
Operation and Cleaning						
Volume of gases handled		Pressure dro	p acr	oss collector (in. of	water).	recours drop
ACFM @	°F	Describe the	equi	pment to be used to		nessure urop.
Type of filter cleaning					—	A'- 1-1-
Manual Cleaning		Bag Collapse	e ina			Air Jets
		Reverse Air	Flow			
Describe the equipment provi	ded if dry oil	free air is requir	ed fo	r collector operation)	
Cleaning Initiated By	range	Frequency if tim	ier ac	tuated	ther Specify	
Does air cleaning device emp	bloy hopper h	eaters, hopper	- vibrat	ors or hopper level	detectors? If	yes, describe.
Describe the warning/alarm s	ystem that p	rotects against c	opera	tion when the unit is	s not meeting	design requirements.
Emissions Data				······································		
Pollutant		Inlet		Outlet	R	emoval Efficiency (%)
					···	

Sec	tion C - Air Cle	eaning Device (Conti	nued)						
6. Wet Collection Equipment				······································					
Equipment Specifications									
Manufacturer	Туре		Model No.						
not applicable									
Design Inlet Volume (SCFM)		Relative Particulate/Gas	Velocity (eject	tor scrubbers only)					
Describe the internal features (e.g., limiters, etc.).	variable throat, ga	as/liquid diffusion plates,	spray nozzles,	, liquid redistributors, bed					
Describe pH monitoring and pH adjust	ment systems, if a	pplicable.							
Describe mist eliminator or separator	type, configuration	, backflush capability, freq	luency).						
Attach particulate size efficiency curve	•								
Operating Parameters									
Inlet volume of gases handled	(ACFM)	Outlet volume of ga	Outlet volume of gases handled (ACFM)						
@	°F	@	°F	% Moisture					
Liquid flow rates. Describe equipm recirculating solution, makeup water, b Describe scrubber liquid supply system	ent provided to r leed flow, etc.)	neasure liquid flow rates	s to scrubber	(e.g., quenching section,					
etc.)		p							
State pressure drop range (in water) a provide to measure the pressure drop	across scrubber (e Do not include de	.g., venturi throat, packed uct or de-mister losses.	bed, etc.) only	 Describe the equipment 					
Describe the warning/alarm system th	at protects against	operation when unit is no	t meeting desig	gn requirements.					
Emissions Data									
Pollutant	Inlet	Outlet		Removal Efficiency (%)					
				······································					
				·					

Section C - Air Cleaning Device (Continued)							
7. Electrostatic Precipitate	or						
Equipment Specifications							
Manufacturer		Model No.			U Wet		Dry
not applicable						e-Stage	Two-Stage
Gas distribution grids	s 🗍 No		D	esign Inlet Volume (S	CFM)		
			M	aximum operating ten	nperature (°	'F)	
Total collecting surface area	ea sq. ft. Collector plates size length _				ft. x width	ft.	
Number of fields Number of collector plates/field							
Spacing between collector plates inches.							
Maximum gas velocity	fi	t./sec.	Minim	um gas treatment time	e:	sec.	
Total discharge electrode lengt	¦h	ft.					
Number of discharge electrode	es		Numb	er of collecting electro	de rappers		
Rapper control Magr	netic [Pneuma	tic	Other		[Describe in detail
Operating Parameters							
Inlet gas temperature (°F)		-		State pressure dro	p range (ind	ches water	gauge) across
Outlet gas temperature (°F)		_		collector only			
				Describe the equip	ment		
Volume of gas handled (ACFN	Λ)	-		Dust resistivity (oh	m-cm). Wil	I resistivity	vary?
Power requirements							
Number and size of Transform	er Rectifier	sets by ele	ctrical f	ield			
Field No.	No. of S	Sets	Ea	Each Transformer Each Rectifie			ectifier Ma DC
	<u> </u>		_		KVA KV AVE.		
Current Density		Corona Po	wer		Corona Power Density		
Micro amperes/f	ť.		_ Watts/1000 ACFM _		Watts/ft ² .		
Will a flue gas conditioning sys	tem be em	ployed? If y	/es, de	scribe it.			
Does air cleaning device emplo	oy hopper h	neaters, hop	per vib	prators or hopper level	detectors?	lf yes, de	scribe.
Describe the warning/alarm sy	stem that p	rotects aga	inst ope	eration when unit is no	ot meeting o	lesign requ	uirements.
Emissions Data							
Pollutant	 It	nlet		Outlet		Remo	val Efficiency (%)
					<u> </u>		

Section C - Air Cleaning Device (Continued)								
8. Adsorption Equipment								
Equipment Specifications								
Manufacturer	Туре			Model No.				
not applicable								
Design Inlet Volume (SCFM)	Adsorbent charge per adsorber vessel and number of adsorber vessels							
Length of Mass Transfer Zone (MTZ), supplied by the manufacturer based upon laboratory data.								
Adsorber diameter (ft.) and area ft ² .)			Adsorption bed depth (ft.)					
Adsorbent information								
Adsorbent type and physical properties.								
Working capacity of adsorbent (%)			Heel percent or unrecoverable solvent weight % in the adsorbent after regeneration.					
Operating Parameters								
Inlet volume of gases handled (ACFM) @ °F								
Adsorption time per adsorption bed			Breakthrough capacity: Lbs. of solvent / 100 lbs. of adsorbent =					
Vapor pressure of solvents at the inlet temperature			Available steam in pounds to regenerate carbon adsorber (if applicable)					
Percent relative saturation of each solvent at the inlet temperature								
Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment.								
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.								
Emissions Data								
Pollutant	nlet		Outlet	Removal Efficiency (%)				

Section C - Air Cleaning Device (Continued)									
9. Absorption Equipment									
Equipment Specifications									
Manufacturer		Туре			0.				
not applicable									
Design Inlet Volume (SCFM)			Tower height (ft.) and inside diameter (ft.)						
Packing type and size (if applicable)			Height of packing (ft.) (if applicable)						
Number of trays (if applicable)			Number of bubble caps (if applicable)						
Configuration									
	Cross flow								
Describe pH and/or other monitoring and controls.									
Absorbent information									
Absorbent type and concentration.			Retention time (sec.)						
Attach equilibrium data for absorption (if applicable)									
Attach any additional information regarding auxiliary equipment, absorption solution supply system (once through or recirculating, system capacity, etc.) to thoroughly evaluate the control equipment. Indicate the flow rates for makeup, bleed and recirculation.									
Operating Parameters									
Volume of gas handled (ACFM)) Inlet	temperature (°F)	Pressure drop (in. of water) and liquid flow rate. Describe the monitoring equipment.						
State operating range for pH and/or absorbent concentration in scrubber liquid.									
Describe the warning/alarm system that protects against operation when unit is not meeting design requirements.									
Emissions Data									
Pollutant	In	let	Outlet	Removal Efficiency (%)					
			· · · · · · · · · · · · · · · · · · ·						
			<u> </u>						
Section C - Air Cleaning Device (Continued)									
---	-----------------------	----------	---	--------------------------------	---------------------------------------	--	--	--	--
10. Selective Catalytic Reduction (SCR)									
Selective Non-Catalytic Reduction (SNCR)									
Non-Selective Catalytic	Reduction (NSCR	R)							
Equipment Specifications									
Manufacturer	I ype Model No.								
Design Inlet Volume (SCFM) Design operating temperature (°F)									
13,713 lbs/hr.			1177						
Is the system equipped with process controls for proper mixing/control of the reducing agent in gas stream? If yes, give details.									
Yes, Altronic EPC-100 or equivale	nt								
Attach efficiency and other pertine	nt information (e.g.,	ammon	ia slip)						
Operating Parameters									
Volume of gases handled	(ACFM)	@	°F						
Operating temperature range for t	he SCR/SNCR/NS	CR syst	em (°F) From	°F	To°F				
Reducing agent used, if any			Oxidation catalyst u 3-way NSCR cataly	ised, if any ist for Waukes	sha rich burn engine				
State expected range of usage rate	e and concentration	.							
O			Ammonia alin (nnm	<u> </u>					
3 - 5 vrs.)					
Describe fully with a sketch give operation.	ng locations of ec	quipmen	t, controls systems,	important p	arameters and method of				
See attachment in Section 7									
Describe the warning/alarm system	n that protects agair	nst oper	ation when unit is no	t meeting des	ign requirements.				
See Altronic EPC-100 AFRC Insta	llation Drawings in S	Section	7						
Emissions Data					· · · · · · · · · · · · · · · · · · ·				
Pollutant	Inlet		Outlet		Removal Efficiency (%)				
NOx 13.0g/	np-hr		0.2g/hp-hr	>	98				
CO 9.0g/hj	o-hr.).26g/hp-hr.		·····				
VOC 0.3g/h	o-hr.		0.12g/hp-hr.						

Section C - Air Cleaning Device (Continued)										
11. Oxidizer/Afterburne	ors									
Equipment Specification	s									
Manufacturer		Туре 🗌	Th	ermal 🔲 Catalytic	Model No.					
not applicable										
Design Inlet Volume (SCFI	Combustior chamber vo	Combustion chamber dimensions (length, cross-sectional area, effective chamber volume, etc.)								
Describe design features, which will ensure mixing in combustion chamber.										
Describe method of preheating incoming gases (if applicable). Describe heat exchanger system used for heat recovery (if applicable).										
Catalyst used	Life of catalys	st	Ex	pected temperature rise	Dimensions of bed (in inches).					
			aci	ross catalyst ("F)	Height:					
					Diameter or Width:					
		•••••								
Are temperature sensing d If yes, describe.	evices being p	rovided to me	easi	ure the temperature rise a	across the catalyst? Yes No					
Describe any temperature or sketch.	sensing and/or	recording de	evice	es (including specific loc	ation of temperature probe in a drawing					
Burner Information										
Burner Manufacturer		Model No.			Fuel Used					
Number and capacity of bu	Irners	Rated capa	Rated capacity (each)		Maximum capacity (each)					
Describe the operation of t	he burner			Attach dimensioned diagram of afterburner						
Operating Parameters				I						
Inlet flow rate (ACFM)	@	°F		Outlet flow rate (ACFN	1)°F					
State pressure drop range water).	across catalyti	c bed (in. of		Describe the method a the used catalyst.	dopted for regeneration or disposal of					
Describe the warning/alarr	n system that p	protects again	nst c	operation when unit is no	t meeting design requirements.					
Emissions Data										
Pollutant	l	niet		Outlet	Removal Efficiency (%)					
······································										
		<u> </u>								

Section C - Air Cleaning Device (Continued)									
12. Flares									
Equipment Specification	IS				-				
Manufacturer		Туре 🗌 Е	evated flare	🛛 Grou	nd flare	Model No.			
Superior Fabrication Inc. (SFI)		her		Describe	48"			
Design Volume (SCFM)		Dimensions of	stack (ft.)						
1500		Diameter <u>48"</u>		Height					
Residence time (sec.) and	outlet	Turn down rat	io		Burner details				
temperature (°F)					2.1MM btu/hr.				
Describe the flare design (air/steam-assisted or nonassisted), essential auxiliaries including pilot flame monitor of proposed									
flare with a sketch, non-as	isisted natural (fraft type							
Describe the operation of	the flare's igniti	on system.	<u></u>						
constant pilot	_	-							
Describe the provisions to	introduce auxi	liarv fuel to the fl	are.						
					······				
Operation Parameters									
Detailed composition of the	ne waste gas	Heat content			Exit velocity				
		approx. 1700B	tu/cf		10ft/sec.				
Maximum and average ga	is flow burned ((ACFM)	Operating	temperature	(°F)				
approx. 1000									
Describe the warning/alar	m system that	protects against	operation w	hen unit is not	meeting design requi	rements.			
Emissions Data	<u> </u>								
Pollutant		Inlet		Outlet	Removal E	fficiency (%)			
VOC	76.2		1.52 lbs	/hr.	approx. 98 +	<u> </u>			
ТНС	210.7	· · · · · · · · · · · · · · · · · · ·	4.21 lb/	þr.	approx. 98 +				
L	l								

	Sectio	n C - Air Clea	ning Device (Contin	ued)			
13. Other Control Equi	pment						
Equipment Specification	S						
Manufacturer		Туре	1	Model No.			
Design Volume (SCFM)		L	Capacity				
Describe pH monitoring ar	nd pH adjustme	nt, if any.	<u></u>				
Indicate the liquid flow rate	and describe e	equipment provide	ed to measure pressure d	rop and flow rate, if any.			
Attach efficiency curve and	d/or other efficie	ency information.					
Attach any additional date	including auxili	ary equipment an	d operation details to thor	oughly evaluate the control equipment.			
Operation Parameters							
Volume of gas handled	FM @	°F	% M	oisture			
Describe fully giving impor	tant parameter	s and method of c	peration.				
Describe the warning/alar	m system that p	protects against op	peration when unit is not n	neeting design requirements.			
Emissions Data							
Pollutant		nlet	Outlet	Removal Efficiency (%)			
		· · ·					

Section C - Air Cleaning Device (Continued)

14. Costs

Indicate cost associated with air cleaning device and its operating cost (attach documentation if necessary)

ided in gn package		
	 <u> </u>	
A		
	ulling and disposal of dust effluent of	dling and disposal of dust offluent, etc. from the air clean

not applicable

Attach manufacturer's performance guarantees and/or warranties for each of the major components of the control system (or complete system).

See Section 7 for guarantees on Waukesha engines

methods of controlling fugitive emissions.

Attach the maintenance schedule for the control equipment and any part of the process equipment that if in disrepair would increase air contaminant emissions.

routine maintenance will be conducted as per plant specifications and mfg. specifications

Section D - Additional Information		
Will the construction, modification, etc. of the sources covered by this application increase e the facility? If so, describe and quantify.	emissions from o	ther sources at
Modification will increase plant capacity from 40MM cfd to 130MM cfd		
If this project is subject to any one of the following, attach a demonstration to show compli	ance with applica	able standards
If this project is subject to any one of the following, attach a demonstration to show complik	ance with applica	able Stanuarus.
a. Prevention of Significant Deterioration permit (PSD), 40 CFR 52?		NO 🛛
b. New Source Review (NSR), 25 Pa. Code Chapter 127, Subchapter E?		NO 🛛
c. New Source Performance Standards (NSPS), 40 CFR Part 60? (If Yes, which subpart) <u>JJJJ and IIII</u>	🛛 YES	
 National Emissions Standards for Hazardous Air Pollutants (NESHAP), 40 CFR Part 61? (If Yes, which subpart) 	Tes 🗌	⊠ NO
e. Maximum Achievable Control Technology (MACT) 40 CFR Part 63? (If Yes, which part) ZZZZ and HH	🛛 YES	
Attach a demonstration showing that the emissions from any new sources will be the minir	num attainable t	hrough the use
 New Waukesha Engines - Rich Burn Engines will be equipped with John Matthey 3-way VOC and HCOH 	catalyst for contr	ol of NOx, CO,
Devide evidence increases and decreases in allowable (or potential) and patural amissions	within the last fi	ve (5) years for
applicable PSD pollutant(s) if the facility is an existing major facility (PSD purposes).		ve (5) years for
Facility is currently constructing under GP5-63-00969. This PA will modify existing source. shown in Section 6.	Total plant emis	sions are

Section D - Additional Information (Continued)

Indicate emission increases and decreases in tons per year (tpy), for volatile organic compounds (VOCs) and nitrogen oxides (NOx) for NSR applicability since January 1, 1991 or other applicable dates (see other applicable dates in instructions). The emissions increases include all emissions including stack, fugitive, material transfer, other emission generating activities, quantifiable emissions from exempted source(s), etc.

		Indicate Yes		VO	Cs	N	Ox
		or No if		Emission			
		emission		increases	Creditable	Emission	Creditable
		increases and		in	emission	increases	emission
		decreases		potential	decreases	in	decreases
Permit		were used		to emit	in actual	potential	in actual
number	Date	previously for			emissions	to emit	emissions
(if applicable)	issued	netting	Source I. D. or Name	(tpy)	(tpy)	(tpy)	(tpy)
			not applicable				
			facility remains a natural minor source				
					·		
	-						

If the source is subject to 25 Pa. Code Chapter 127, Subchapter E, New Source Review requirements,

a. Identify Emission Reduction Credits (ERCs) for emission offsets or demonstrate ability to obtain suitable ERCs for emission offsets.

b. Provide a demonstration that the lowest achievable emission rate (LAER) control techniques will be employed (if applicable).

c. Provide an analysis of alternate sites, sizes, production processes and environmental control techniques demonstrating that the benefits of the proposed source outweigh the environmental and social costs (if applicable).

Attach calculations and any additional information necessary to thoroughly evaluate compliance with all the applicable requirements of Article III and applicable requirements of the Clean Air Act adopted thereunder The Department may request additional information to evaluate the application such as a standby plan, a plan for air pollution emergencies, air quality modeling, etc.

Section E - Compliance Demonstration									
Note: Complete this section if source is not a Title V facility. Title V facilities must complete Addendum A.									
Method of Compliance Type: Check all that apply and complete all appropriate sections below									
Monitoring X Testing Reporting									
Recordkeeping Work Practice Standard									
Monitoring:									
a. Monitoring device type (Parameter, CEM, etc): Source testing of engines, flowmeters and engine interface									
b. Monitoring device location: Compressor engine stacks and plant outlet									
c. Describe all parameters being monitored along with the frequency and duration of monitoring each parameter:									
Stack testing as required by PA DEP and NSPS Subpart JJJJ. Also total gas flow through station will be taken									
on a daily basis, engine hours will be recorded on a monthly basis and gas analysis will be conducted monthly									
Testing:									
a. Reference Test Method: Citation 40 CFR part 60 Appendix A for NOx, VOC and CO and other tests as required by PA									
b. Reference Test Method: Description As stipulated in 40 CFR Part 60 Appendix A									
Recordkeeping:									
Describe what parameters will be recorded and the recording frequency:									
Gas analysis, plant throughput and engine run times will be kept at the facility and provided to PA DEP as requested									
Reporting:									
a. Describe what is to be reported and frequency of reporting:									
Reports will be submitted as required by Federal NSPS, Plan Approval and State Only Operating Permit (SOOF									
b. Reporting start date: Annually or as required by PA or SOOP									
Work Practice Standard:									
Describe each: Routine maintenance will be conducted at this location to ensure proper operation of the facility									

2700-PM-AQ0007 Rev. 7/2004

 Estimated Atmo 	spheric Emissio	ns*							
		Max	imum emis:	sion rate					
Pollutant	specify unit	ts	lbs/hr		tons/yr.	E	Calculation/ stimation Method		
PM									
PM ₁₀		1.28	3	5.5		See S	Section 6		
SOx		neg	-	neg.		See S	Section 6		
СО		13.0)4	56.9		See S	Section 6		
NO _x		11.4	12	5.01		See S	Section 6		
VOC		10.0)3	43.8		See S	Section 6		
Others: (e.g., HAPs)			9						
НСОН		0.43 1.90 See S				Section 6			
Other HAPs				2.83		See S	Section 6		
* These emissions mu schedule for maximu values were determin	ist be calculated im limits or restric ned. Attach calcula	based on t ted hours of ations.	the requestent of operation	ed operating and /or restr	schedule an icted through	d/or proces put. Descr	s rate e.g., operating ibe how the emission		
2. Stack and Exhau	uster								
Stack Designation/Nur	mber New Engine	s Sources	103 through	110					
List Source(s) or source	ce ID exhausted to	o this stack	:	% of flow exh	austed to sta	ck: 100			
8 new Waukesha engi	nes								
Stack height above gra Grade elevation (ft.) 11	ade (ft.) 35 100	Sta app	ck diameter rox. 1'	(ft) or Outlet	duct area (so	ą. ft.)	f. Weather Cap ⊠ YES □ NO		
Distance of discharge	to nearest proper	ty line (ft.).	Locate on	topographic r	nap.				
located in remote area se	ee attached map fol	lowing GIF							
Does stack height mee	et Good Engineerir	ng Practice	(GEP)?						
no									
no If modeling (estimating and other obstructions	g) of ambient air e	quality imp	acts is need	led, attach a	site plan wit	h buildings	and their dimensions		
no If modeling (estimating and other obstructions Location of st Latitude/Long	g) of ambient air o ack** gitude	quality imp	acts is need Latitude	led, attach a	site plan wit	h buildings Longi	and their dimensions		
no If modeling (estimating and other obstructions Location of st Latitude/Long Point of Ori	g) of ambient air o ack** gitude	quality imp	acts is need Latitude Minutes	ded, attach a	site plan wit	h buildings Longi Minutes	and their dimensions tude Seconds		
no If modeling (estimating and other obstructions Location of st Latitude/Long Point of Ori	g) of ambient air o ack** jitude igin	quality imp Degrees 40	acts is need Latitude Minutes 19	ded, attach a Seconds 54	site plan wit Degrees 80	h buildings Longi Minutes 22	and their dimensions tude Seconds 43		
no If modeling (estimating and other obstructions Location of st Latitude/Long Point of Ori Stack exhaust Volume see spec.	g) of ambient air of a s. ack** gitude igin sheet ACFM T	Quality imp	acts is need Latitude Minutes 19 e <u>1177</u> °F	ded, attach a Seconds 54	site plan wit Degrees 80 Moistu	h buildings Longi Minutes 22 re %	and their dimensions tude Seconds 43		
no If modeling (estimating and other obstructions Location of st Latitude/Long Point of Ori Stack exhaust Volume <u>see spec.</u> Indicate on an attach necessary dimensions	g) of ambient air of a s. ack** gitude igin <u>sheet</u> ACFM T ned sheet the loc	Degrees 40 emperatur	acts is need Latitude Minutes 19 e <u>1177</u> °F ampling por	Seconds 54 ts with respe	site plan wit Degrees 80 Moistu ect to exhau	Longi Minutes 22 re % st fan, bree	and their dimensions tude <u>Seconds</u> 43 % eching, etc. Give al		

NOV 1 4 2012

Section G - Attachments
Number and list all attachments submitted with this application below:
Section 1 - Introduction
Section 2 - GIF
Section 3 - Municipal Notifications
Section 4 - Compliance Review Form
Section 5 - Plan Approval Application
Section 6 - Emission Estimates
Section 7 - Equipment Specifications
Section 8 - Copy of current GP-5

Section 6

•

Emission Estimates

.

,

Emission Estimates MarkWest Liberty Midstream & Resource, LLC Smith Compressor Station

On March 20, 2012 Markwest Liberty Midstream & Resources, LLC received a GP-5 Permit (GP5-63-00968) and is currently construction the Smith Compressor Station located Smith Township, Washington County, PA. This General Permit authorized the construction, installation and operation of the following emission sources:

- Two (2) Waukesha L7042G 1480hp rich burn engines with 3-way catalysts
- Two (2) John Deere 197 hp diesel engines
- One (1) 40MM scfd dehydration unit with a 2.0MM Btu/hr. re-boiler
- One (1) 550bbl gun-barrel separation tank
- Four (4) 400bbl condensate and/or produced water tanks
 - Note: The storage tanks are controlled with a Vapor Recovery Unit (VRU) designed to control 100% of the flashing, breathing and evaporative losses. 98% control is being claimed to account for minor outages, etc...

Recently producers have stated that they will be drilling more in this area thus requiring more compression and dehydration than previously anticipated. After a further review of the projections for this station MarkWest has determined that the following additional changes and additional engines are needed:

- Nine (9) additional Waukesha P9390GSI 1980hp rich burn engines with 3-way catalysts
- An Increase in Dehydration capacity to 130MM cfd
- Engine and facility blowdowns accounted for.

Emission projections from the new and modified sources are estimated as follows:

- Waukesha Engine P9390GSI 1980hp rich burn engines with 3-way catalysts
 - o NO_x = 0.2g/bhp-hr. x 1980hp = 396g/hr. = 0.87lbs/hr. = 3.82tpy
 - o CO = 0.26g/bhp-hr. x 1980hp = 515g/hr. = 1.14lbs/hr. = 4.97tpy
 - o VOC = 0.12g/bhp-hr. x 1980hp = 238g/hr. = 0.53lbs/hr. = 2.30tpy
 - o HCOH = 0.01 g/hp-hr = 0.044 lbs/hr. = 0.20 tpy
 - o PM = 0.027 g/hp-hr = 0.12 lbs/hr = 0.51 tpy
 - CO₂ =15.428Mm Btu/hr. x 53.02kg/MM Btu x 8760hrs/yr. = 7165600kg/yr. = 7,165.6 metric tons/yr. (adding estimated CO₂(e) for CH₄ and N₂O adds approx. 5.68tpy)
 - o CO₂(e) = 7,171.3 metric tons per year
- Dehydration Unit upgrade to 130MM cfd
 - VOC emissions = 4.21 lbs/hr. = 6.68 tpy (from GRI-CLYCalc)
 - o HAPs = 0.22 lbs/hr. = 0.094 tpy
 - \circ CO₂ (from oxidation of CH₄)
 - 8.36 tpy methane = 177 tpy CO₂e

- Re-boiler (2.0MM Btu/hr.) approximately 1818 scf/hr
 - NO_x = 1818 cf/hr. x 0.0001lb/cf = 0.182 lbs/hr. = 0.80 tpy
 - CO = 1818 cf/hr x 0.000084lbs/cf = 0.153 lbs/hr. = 0.67 tpy
 - VOCs = 1818 cf/hr x 0.0000055lbs/cf = 0.010 lbs/hr. = 0.044 tpy
 - \circ CO₂ = 1,057 metric tpy
 - Other emissions = negligible
- HYSYS Run (Tanks and VRU)
 - o Predicted VOC 0.90 tpy or 0.20 lbs/hr.
 - o Predicted HAP 0.02 tpy or <0.01 lbs/hr.
- Diesel Engines. (Emission Rates for NOx and CO based on GP-9 maximum emission limits of 2.98 g/hp-hr NOx, 0.1 g/hp-hr CO [with secondary control], 0.15 g/hp-hr for PM. Actual data from engine manufacturer shows 2.68 g/hp-hr for NOx and 0.13 g/hp-hr for PM).
 - NOx = 2.98 g/hp-hr = 1.29 lb/hr = 5.65 tpy
 - CO = 0.1 g/hp-hr = 0.04 lb/hr = 0.19 tpy
 - VOC = 25% of NOx at 2.68 g/hp-hr = 0.29 lb/hr = 1.27 tpy
 - HCHO = negligible
 - \circ SO₂ = negligible
 - PM₁₀ = 0.15 g/bhp-hr = 0.07 lb/hr = 0.31 tpy
 - \circ CO₂ = 624 metric tpy
- Fugitive emissions from leaks, etc.

		Fugitive Emissions fro	om Compo	nent Leaks			
Equipment Type	Count	Leak Emission Factors Lbs/hr./component	Source of Factor	Stream Type (gas/liquid etc.)	Estimated Emissio (Tons/yr.)		issions .)
					VOC	HAPs	Notes
Connectors/Flanges	165	0.00086	EPA	Nat. Gas	0.174	0.0065	
Connectors/Flanges	66	0.000243	EPA	Light Oil	0.0548	0.0044	
Connectors/Flanges	66	0.000006	EPA	Water/Lt. Oil	0.0017	0.0017	
Compressors	11	0.0194	EPA	Nat. Gas	0.2617	0.0098	
Open Ended Lines	11	0.00441	EPA	Nat. Gas	0.0595	0.0022	
Pump Seals	0	0.00529	EPA	Nat. Gas	0.00	0.00	
Pump Seals	11	0.02866	EPA	Light Oil	1.0770	0.0870	
Pump Seals	11	0.000052	EPA	Water/Lt. Oil	0.0025	0.0025	
Valves	165	0.00992	EPA	Nat. Gas	2.0074	0.0753	
Valves	66	0.0055	EPA	Light Oil	1.2402	0.1002	
Valves	66	0.000216	EPA	Water/Lt. Oil	0.0624	0.0624	
Totals					4.9412	0.3520	

DEPT ENVIRONMENTAL PROTECTION

The projected emissions from the facility are projected in the following table:

Emission Point	NOx	NOx	CO	СО	VOC	VOC	PM	PM	нсон	нсон	CO2
Waukesha 17042G	0.66	2.86	0.82	3.57	0.56	2.46	Lbs/hr.	tpy 0.39	lbs/hr	tpy 0.14	tpy 6669
With NSCR	0.00	2.00	0.02	3.57	0.50	2.40	0.03	0.55	0.055	0.14	0009
Waukesha L7042G With NSCR	0.66	2.86	0.82	3.57	0.56	2.46	0.09	0.39	0.033	0.14	6669
Waukesha P9390GS With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
Waukesha P9390GSI With 3-way cat.	0.87	3.82	1.14	4.97	0.53	2.30	0.12	0.51	0.044	0.20	9054
John Deere DCA150USJ	1.29	5.65	0.04	0.19	0.29	1.27	0.07	0.31	Neg.	0.01	890
John Deere DCA150USJ	1.29	5.65	0.04	0.19	0.29	1.27	0.07	0.31	Neg.	0.01	890
Dehydration Unit	-	-	19) Y		1.52	6.68	-		-	-	2553
Re-boiller	0.18	0.82	0.15	0.67	0.01	0.04	-		Neg.	Neg.	1139
Flare	0.38	1.65	2.05	8.96			-				8
Four 400bbl tanks From HYSYS Run					0.20	0.90			0.01	0.02	5
Fugitive Emissions					1.13	4.94	-				101
Blowdown Emissions		-	25.3	05.5100	1.23	5.40		-	-		251
TOTALS	11.42	50.1	13.04	56.9	10.03	43.8	1.28	5.5	0.43	1.90	91607

Emission Point	HAP lbs/hr	HAP tpy	Benzene lbs/hr	Benzene tpy	Toluene lbs/hr	Toluene tpy	Xylene lbs/hr	Xylene tpy
Fugitive Leaks	0.08	0.35	-	-	-	•	-	-
Waukesha L7042s x2	0.17	0.76	0.04	0.16	0.02	0.056	0.01	0.02
Waukesha P9390s x9	0.75	3.29	0.20	0.85	0.07	0.30	0.03	0.11
Diesel Engines x2	-	0.02		0.01	•	•	1	-
2.0 mmbtu/hr reboiler	0.004	0.016	-	•	•	-3.01	-	•
Blowdown Emissions	0.07	0.29	0.001	0.003	0.002	0.007	0.001	0.004
TOTALS	1.09	4.73	0.24	1.02	0.09	0.36	0.04	0.13
and the second second	1000	i and		2	and the second second	Walt		

The projected HAP emissions from the facility are projected in the following table:

NOV 1 4 2012 DEPT ENVIRONMENTAL PROTECTION

Color Key

8

dur factor

Flaire CD, « Vol Eas Flaired s' Flaire N₆D + Gas Flaired s Erris

....

Engine CO,e + But

Ceki es, LLC

Estimation of Potential GHG Emissions Three Brothers Compressor Station

MarkWest Liberty Midstream and Res

110 The second leaves

45,927.44 19.104.11 Tatal Forsity Earlision:

PRENMAN OF

Loading Dru + VOC DATE OF THE

MUNO.

andare with total GHG on

tons CO,e are used to

of all

Source ID Number	Concription	Maximum Hours of Operation	Rated HP	Ramed Capacity (namEsuding)	Factor (tentm.1.)	Factor (milling)	(Manufaction	(Manwani)	(mannin)	(m.t)	10	(1) m)	8	cr,	*,0 (s	00, +1 00,el n	of, and	mt 00,el	(#1 CO,#)	(and CO,e)
1	Wasterhall 2042 w/MCR	01/10	1,480	11 360	1 10231	10010	24.70	10010	1000 0	5,457.77	0.10	0.01		r,	atk	11.124,0	2.10	13	5,462.96	6,021.87
7	Waukesha 17042 w/NSCR	6,760	1,480	11.960	1,10231	10010	2.12	100.0	1000 0	5,457.77	0.10	10.0		22	s ots	11.124.1	2.10	109	5,462.96	18 120'9
1	Waukesha G939005H w/W3C8	a,740	1,560	15.428	1.10231	10010	53.02	100.0	1000.0	1,165.61	0.74	0.01		12	1 916	19 5914	2.64	617	2,372.64	1,906.48
•	Washerba 69,910659 w/14509	a,760	1,940	15.423	110201-1	10010	23.62	too a	100010	19 591'4	0.74	10/0		12	t att	19'991'1	2.84	419	7,172.64	1,908.48
\$	Washesha 69 90051 w/WO3	A,760	1,980	878-51	110231	10010	53,62	C 201	1000 0	7,165.61	10	10.0		12	ats.	19.551.1	2.84	61.9	29.272,5	1,906.48
*	Windowski 69390051 w/WSC8	a,740	1,560	15.428	1 10231	10010	53,62	10010	100012	13 107 01	10	10.0		12	310	19:5914	2.66	613	7,372.64	7,906.48
	Windowing GREEDER WINDOW	a,740	1,960	15.428	110231	100'0	2015	100.9	1000.0	7,165.62	10	0.01		n	310	19:591	181	4.19	7,372.64	1,906.44
	0004/m 0500440 evinema.	a 8,760	1,940	15.428	110231	10010	53.02	100.0	0000	7,245.62	140	0.01		4	910	19:591.1	284	\$	1,172.64	1,906.48
*	COM/M (SDOGLU) INVERSE.	N 8,760	1,940	15.428	INCOL.I	1000	\$3.02	100 G	100010	7,145.61	5.74	0.01		5	are are	13.255.51	284	9	7,172.64	1,926.44
10	Waterine Of 190551 w/WCO	N 8,760	0957	12,423	110211	10010	23.02	100.0	0000	17,265,61	70	10.0		段	350	12:265.61	2.84	413	7,172.64	37,905.46
:	Water of 1905 to Work	x 4,740	1,960	15.439	1,10231	1000	53.02	0.001	0,000	7,105.61	10	10.0	,,	я	310	13:53:1	2	£13	1,172.64	1,906.08
Chesel	Center (CORP45285)	8,740	161	10	1,10251	1000	83	toro	100010	545.42	100	900		8	32.0	242395	0.22	0.12	345 295	551.85
Denet	Ceere SOBPU 205	094.1	161	81	1.10231	10010	2 20	0.001	100013	545.42	ų,	80	**	п	2	545.42	272	10.35	96 295	99123
Reboller	Radio las	092.9		2	1 10231	2,001	24.70	0.001	0,0001	958.M	8.8	0.002	-	g	320	958 M	15.0	250	959.26	1,057.40

Section 2.7.3 and 6.1

unter Da	***/http:/	Maximum Carry of Operation	in the	Æ	No.	Factor (towin L)	(m1)	(mut)	(1.44)	601	8	10 M	11 CD(#) 18	it cover the	1 (00)1	at coat in	et CO _J el
1	stage Tards	200	110	020	1	142011	003	10	i.	**	12	i	010	5		14.5	5
Bewei	the lateral	sus	110	11439		112011	010	20.02	0	4	u	ii.	010	#2 (22	,	327.56	29.052

	175.34
Total E (m.t. co.je)	15.921
NLO INL COAL	80
Emissions CH, Imit CO/el	12 651
00, (m1 00,e)	800
anna a	etti
a maning P.	12
and do	*
a true	0.0000
100	1.5467
60 10	88
Entresses Pactor N/O Pro1.Ambuch	1 10 01
5 <u>1</u>	000
10 Sol	50070
]]	0919
Factor (tenint)	110231
	6733
Ammuni Gans Unauge Jactimo	006.2
Maximum Nours of Operation	âÇ
Cescription	TIG Carly Hart
admuk D Number	Canvis

cast of the dark face collected from Note - CO, and N

Aure Section 4.5

AP-42 HAP Estimate

Minus Formaldehyde

Waukesha L7042 Fuel Comsumption = 7696 btu/bhp-hr = 99777 mmbtu/yr

	Emission Factor	L7042	Emission Rate	Emission Rate
Compound	(lb/MMBtu)	(MMBtu/yr)	(lb/yr)	(tpy)
1,1,2,2-Tetrachloroethane	2.52E-05	9.98E+04	2.51E+00	1.26E-03
1,1,2-Trichloroethane	1.53E-05	9.98E+04	1.53E+00	7.63E-04
1,3-Butadiene	6.63E-04	9.98E+04	6.62E+01	3.31E-02
1,3-Dichloropropene	1.27E-05	9.98E+04	1.27E+00	6.34E-04
Acetaldehyde	2.79E-03	9.98E+04	2.78E+02	1.39E-01
Acrolein	2.63E-03	9.98E+04	2.62E+02	1.31E-01
Benzene	1.58E-03	9.98E+04	1.58E+02	7.88E-02
Carbon Tetrachloride	1.77E-05	9.98E+04	1.77E+00	8.83E-04
Chlorobenzene	1.29E-05	9.98E+04	1.29E+00	6.44E-04
Chloroform	1.37E-05	9.98E+04	1.37E+00	6.83E-04
Ethylbenzene	2.48E-05	9.98E+04	2.47E+00	1.24E-03
Ethylene Dibromide	2.13E-05	9.98E+04	2.13E+00	1.06E-03
Methanol	3.06E-03	9.98E+04	3.05E+02	1.53E-01
Methylene Chloride	4.12E-05	9.98E+04	4.11E+00	2.06E-03
Naphthalene	9.71E-05	9.98E+04	9.69E+00	4.84E-03
PAH	1.41E-04	9.98E+04	1.41E+01	7.03E-03
Styrene	1.19E-05	9.98E+04	1.19E+00	5.94E-04
Toluene	5.58E-04	9.98E+04	5.57E+01	2.78E-02
Vinyl Chloride	7.18E-06	9.98E+04	7.16E-01	3.58E-04
Xylene	1.95E-04	9.98E+04	1.95E+01	9.73E-03
Uncontrolled Total HAP Emiss	ions:		1.19E+03	5.95E-01
Controlled HAP Emissions (60	% Control), tpy:			2.38E-01

AP-42 HAP Estimate

Minus Formaldehyde

Waukesha G9390PSI Fuel Comsumption = 7792 btu/bhp-hr = 135149 mmbtu/yr

	Emission Factor	G9390PSI	Emission Rate	Emission Rate
Compound	(lb/MMBtu)	(MMBtu/yr)	(lb/yr)	(tpy)
1,1,2,2-Tetrachloroethane	2.52E-05	1.35E+05	3.41E+00	1.70E-03
1,1,2-Trichloroethane	1.53E-05	1.35E+05	2.07E+00	1.03E-03
1,3-Butadiene	6.63E-04	1.35E+05	8.96E+01	4.48E-02
1,3-Dichloropropene	1.27E-05	1.35E+05	1.72E+00	8.58E-04
Acetaldehyde	2.79E-03	1.35E+05	3.77E+02	1.89E-01
Acrolein	2.63E-03	1.35E+05	3.55E+02	1.78E-01
Benzene	1.58E-03	1.35E+05	2.14E+02	1.07E-01
Carbon Tetrachloride	1.77E-05	1.35E+05	2.39E+00	1.20E-03
Chlorobenzene	1.29E-05	1.35E+05	1.74E+00	8.72E-04
Chloroform	1.37E-05	1.35E+05	1.85E+00	9.26E-04
Ethylbenzene	2.48E-05	1.35E+05	3.35E+00	1.68E-03
Ethylene Dibromide	2.13E-05	1.35E+05	2.88E+00	1.44E-03
Methanol	3.06E-03	1.35E+05	4.14E+02	2.07E-01
Methylene Chloride	4.12E-05	1.35E+05	5.57E+00	2.78E-03
Naphthalene	9.71E-05	1.35E+05	1.31E+01	6.56E-03
РАН	1.41E-04	1.35E+05	1.91E+01	9.53E-03
Styrene	1.19E-05	1.35E+05	1.61E+00	8.04E-04
Toluene	5.58E-04	1.35E+05	7.54E+01	3.77E-02
Vinyl Chloride	7.18E-06	1.35E+05	9.70E-01	4.85E-04
Xylene	1.95E-04	1.35E+05	2.64E+01	1.32E-02
Uncontrolled Total HAP Emiss	ions:		1.61E+03	8.05E-01
Controlled HAP Emissions (60	% Control), tpy:			3.22E-01

AP-42 HAP Estimate Minus Formaldehyde 2.0 mmbtu/hr reboiler = 17,520 mmbtu/yr = 16.69

		2.0 mmbtu/hr		
	Emission Factor	Reboiler	Emission Rate	Emission Rate
Compound	(lb/MMBtu)*	(MMBtu/yr)	(lb/yr)	(tpy)
Acenapththene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Acenaphthylene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Anthracene	2.40E-06	1.67E+01	4.01E-05	2.00E-08
Benz(a)anthracene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Benzene	2.10E-03	1.67E+01	3.50E-02	1.75E-05
Benzo(a)pyrene	1.20E-06	1.67E+01	2.00E-05	1.00E-08
Benzo(b)fluoranthene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Benzo(g,h,i)perylene	1.20E-06	1.67E+01	2.00E-05	1.00E-08
Benzo(k)fluoranthene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Chrysene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
7,12-dimethylbenz(a)anthrancene	1.60E-05	1.67E+01	2.67E-04	1.34E-07
Dibenzo(a,h)anthracene	1.20E-06	1.67E+01	2.00E-05	1.00E-08
Flouranthene	3.00E-06	1.67E+01	5.01E-05	2.50E-08
Fluorene	2.80E-06	1.67E+01	4.67E-05	2.34E-08
Formaldehyde	7.50E-02	1.67E+01	1.25E+00	6.26E-04
Hexane	1.80E+00	1.67E+01	3.00E+01	1.50E-02
Indeno(1,2,3-cd)pyrene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
2-methylnaphthalene	2.40E-05	1.67E+01	4.01E-04	2.00E-07
3-methylchloranthrene	1.80E-06	1.67E+01	3.00E-05	1.50E-08
Naphthalene	6.10E-04	1.67E+01	1.02E-02	5.09E-06
Phenanthrene	1.70E-05	1.67E+01	2.84E-04	1.42E-07
Pyrene	5.00E-06	1.67E+01	8.35E-05	4.17E-08
Toluene	3.40E-03	1.67E+01	5.67E-02	2.84E-05
Uncontrolled Total HAP Emissions:			3.14E+01	1.57E-02

*Table 1.4-3 Emission Factors for Speciated Organic Compounds From Natural Gas Combustion

AP-42 HAP Estimate	
Deere 197 HP Diesel Fuel Comsumption = 8.6 gal/hr * 1	139,200 btu/gal = 10487 mmbtu/yr

	Emission Factor	Deere	Emission Rate	Emission Rate
Compound	(lb/MMBtu)	(MMBtu/yr)	(lb/yr)	(tpy)
1,3-Butadiene	3.91E-05	1.05E+04	4.10E-01	2.05E-04
Acetaldehyde	7.67E-04	1.05E+04	8.04E+00	4.02E-03
Acrolein	9.25E-05	1.05E+04	9.70E-01	4.85E-04
Benzene	9.33E-04	1.05E+04	9.78E+00	4.89E-03
Formaldehyde	1.18E-03	1.05E+04	1.24E+01	6.19E-03
Naphthalene	8.48E-05	1.05E+04	8.89E-01	4.45E-04
Toluene	4.09E-04	1.05E+04	4.29E+00	2.14E-03
Xylene	2.85E-04	1.05E+04	2.99E+00	1.49E-03
Uncontrolled Total HAP	Emissions:		3.97E+01	1.99E-02
Controlled HAP Emission	ns (60% Control), tpy:			7.95E-03

Blowdown and ESD Emission Estimates Measured in Total Gas

	Total Emi	ission	s From Each E	ngine			Site-Wide	Total Engine	Total Site
	Type (lbs) and	Number of En	gines			ESD Emissions	Blowdown	Blowdown
		of Ea	ach Type			Avg. Flow	Per Event	Emissions	Emissions
Station	G3516B	#	G9390	OPSI	#	mmscf/d	(lbs)	(lbs/yr)	(lbs/yr)
Smith	38	3	2	51	9	130	6216	19260	44123

* From historical data assume each engine is blowndown 3 times per month and each facility ESDs 4 times per year.

** Assume Density of natural gas is 0.05 lbs/scf

*** Welling is piped so that high pressure gas is fed back into inlet of station until pressures are equalized, Once pressures are equalized then the remaining blowdown gas is vented to atmosphere.

	Wt% in	Total tpy
Constituent	gas	released
VOC	24.501	5.405
Benzene	0.014	0.003
Toluene	0.033	0.007
N-Hexane	1.288	0.284
E-Benzene	0.001	0.000
Xylenes	0.016	0.004
CO2	0.258	0.057
Methane	54.07	11.929

1

Smith Condensate Tank Emissions from HYSYS Outputs 130 mmscfd

		bbls				
Season	Days	Condensate/Day	Mass Loading VOC lb/hr		HAPs lb/hr	% VOC as HAPs
Spring/Fall	183	36.29	4.68		0.11	0.02
Winter	91	154.31	30.08		0.60	0.02
Summer	91	14.31	1.56		0.04	0.02
Annual Total	365	21985.17	89668.57	lb/yr		0.02
			44.83	ton/yr		
			0.90	Controlled ton/yr		
			0.93	HAPs tpy		
			0.02	Controlled HAPs tpy		

Smith Flare Emission Summary

Pilot Light

AP-42 Emission Factors Section 1.4

NOx	(lb/10 ⁶	CO
	scf)	(lb/10 ⁶ scf)
	100	84

Estimated Pilot Gas = 14 scf/hr = 122,640 scf/yr = 0.1226 10⁶ scf/yr

Estimated Pilot Gas Emissions

NOx = 100 lb/10⁶ scf x 0.1226 10⁶ scf/yr = 12.3 lbs/yr = 0.006 tpy CO = 84 lb/10⁶ scf x 0.1226 10⁶ scf/yr = 10.3 lbs/yr = 0.005 tpy

Emissions from Combustion of VOCs

AP-42 Emission Factors Section 13.5

NOx (lb/10⁶ CO btu) (lb/10⁶ btu) 0.068 0.37

From GRI-Glycalc Total HC Burned in Flare = 233 lb/hr = 2041080 lb/yr Density of Nat. Gas. = 0.05 lb/scf = 40,821,600 scf/yr Heat Content of Gas = 1339 btu/scf = 54,660 mmbtu/yr

Estimated emissions from combustion of VOCs

NOx = 0.068 lb/mmbtu x 54,600 mmbtu/yr = 3712 lbs/yr = **1.86 tpy** CO = 0.37 lb/mmbtu x 54,660 mmbtu/yr = 20224 lbs/yr = 10.11 **tpy**

Total Emissions from Pilot and Combustibles

NOx = 0.006 + 1.86 = 0.64 tpy CO = 0.005 + 10.11 = 10.11 tpy

CUSTOMER:

LOCATION :

SAMPLE POINT:

REPORT DATE:

SAMPLE DATE:

SAMPLED BY:

FIELD :

MEMO:

LAFAYETTE LABORATORY 500 AMBASSADOR CAFFERY PKWY. SCOTT, LOUISIANA 70583-1790 PHONE (337) 237-4775 FAX (337) 237-8005

Certificate of Analysis Number: 2010120258-005A

Gas Analytical Services

Mark West

Master Meter

12/30/2010

JM - GAS

Fulton Discharge

12/21/2010 16:13

FOR: Gas Analytical Services Chuck Honaker PO Box 1028

Bridgeport, WV 26330

TYPE: Gas REPORT: C10+ (GPA Method 2286) CYLINDER: GAS PRESSURE: 950 TEMPERATURE: N.G.

COMPONENT MOL % WEIGHT % GPM's @ 15.025 N2 0.398 0.502 METHANE 74.575 54.070 CO2 0.129 0.258 ETHANE 15.209 20.669 4.148 PROPANE 5.324 10.612 1.496 I-BUTANE 0.647 1.699 0.216 N-BUTANE 1.639 4.307 0.527 **I-PENTANE** 0.391 1.275 0.146 N-PENTANE 0.522 1.704 0.193 **I-HEXANES** 0.365 1.410 0.151 N-HEXANE 0.332 1.288 0.138 BENZENE 0.004 0.014 0.001 CYCLOHEXANE 0.036 0.137 0.012 **I-HEPTANES** 0.168 0.763 0.078 N-HEPTANE 0.099 0.449 0.046 TOLUENE 0.008 0.033 0.003 **I-OCTANES** 0.111 0.543 0.052 N-OCTANE 0.018 0.091 0.009 *E-BENZENE NIL 0.001 NIL *m,o,&p-XYLENE 0.002 0.001 0.016 **I-NONANES** 0.014 0.078 0.007 N-NONANE 0.002 0.012 0.001 **I-DECANES** NIL 0.012 0.001 N-DECANE NIL 0.003 NIL I-UNDECANES + 0.007 0.054 0.005 TOTALS 100.000 100.000 7.231

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Smith
File Name: C:\Program Files\GRI-GLYCalc4\Smith 6-29-2012.ddf
Date: June 27, 2012

DESCRIPTION:

.

Description: One Smith 130 mmscf/d dehy unit

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.9095	45.827	8.3635
Ethane	0.7800	18.721	3.4166
Propane	0.4526	10.863	1.9826
Isobutane	0.0794	1.905	0.3477
n-Butane	0.2234	5.362	0.9785
Isopentane	0.0650	1.560	0.2846
n-Pentane	0.0962	2.309	0.4215
n-Hexane	0.0884	2.122	0.3873
Cyclohexane	0.0269	0.647	0.1180
Other Hexanes	0.0855	2.053	0.3746
Heptanes	0.1102	2.646	0.4829
Benzene	0.0237	0.569	0.1039
Toluene	0.0700	1.680	0.3065
Xylenes	0.0331	0.796	0.1452
C8+ Heavies	0.1698	4.075	0.7436
Total Emissions	4.2139	101.134	18.4570
Total Hydrocarbon Emissions	4.2139	101.134	18.4570
Total VOC Emissions	1.5244	36.586	6.6769
Total HAP Emissions	0.2153	5.167	0.9429
Total BTEX Emissions	0.1269	3.045	0.5556

UNCONTROLLED REGENERATOR EMISSIONS Component lbs/hr lbs/day tons/yr

			Page: 2
Methane	95.4735	2291.364	418.1739
Ethane	39.0023	936.055	170.8301
Propane	22.6320	543.168	99.1281
Isobutane	3.9696	95.270	17.3867
n-Butane	11.1702	268.084	48.9253
Isopentane	3.2493	77.983	14.2319
n-Pentane	4.8111	115.467	21.0728
n-Hexane	4.4210	106.104	19.3639
Cyclohexane	1.3470	32.328	5.8999
Other Hexanes	4.2765	102.636	18.7311
Heptanes	5.5120	132.288	24.1425
Benzene	1.1864	28.473	5.1963
Toluene	3.4990	83.975	15.3255
Xylenes	1.6574	39.779	7.2596
C8+ Heavies	8.4890	203.737	37.1819
Total Emissions	210.6963	5056.710	922.8496
Total Hydrocarbon Emissions	210.6963	5056.710	922.8496
Total VOC Emissions	76.2204	1829.291	333.8455
Total HAP Emissions	10.7638	258.331	47.1453
Total BTEX Emissions	6.3428	152.227	27.7814

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	9.6354	231.250	42.2031
Ethane	7.7670	186.409	34.0197
Propane	3.9760	95.425	17.4150
Isobutane	0.5775	13.861	2.5296
n-Butane	1.4995	35.987	6.5677
Isopentane	0.3384	8.122	1.4823
n-Pentane	0.4592	11.020	2.0112
n-Hexane	0.2681	6.435	1.1744
Cyclohexane	0.0378	0.908	0.1657
Other Hexanes	0.3106	7.453	1.3602
Heptanes	0.1853	4.448	0.8117
Benzene	0.0035	0.083	0.0152
Toluene	0.0059	0.143	0.0260
Xylenes	0.0009	0.022	0.0040

				Page: 3
CE	8+ Heavies	0.0692	1.662	0.3032
Total	Emissions	25.1345	603.227	110.0890
Total Hydrocarbon	Emissions	25.1345	603.227	110.0890
Total VOC	Emissions	7.7320	185.568	33.8662
Total HAP	Emissions	0.2784	6.683	1.2196
Total BTEX	Emissions	0.0103	0.247	0.0452

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 70.00 deg. F Excess Oxygen: 30.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 1.24e+000 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
Xylenes	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25	-
Calculated Dry Gas Dew Point:	6.71	lbs. H2O/MMSCF
Temperature:	99.0	deg. F
Pressure:	1000.0	psig
Dry Gas Flow Rate:	130.0000	MMSCF/day
Glycol Losses with Dry Gas:	4.3784	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	57.02	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	1.65	gal/lb H2O

Page: 4

	Remaining	Absorbed
Component	in Dry Gas	in Glycol
Water	11.75%	88.25*
Carbon Dioxide	99.92%	0.08%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propage	99 98%	0.02%
Tsobutane	99,97%	0.03%
n-Butane	99.96%	0.04%
Isopentane	99.97%	0.03%
n-Pentane	99.96%	0.04%
n-Hexane	99.94%	0.06%
Cyclohexane	99.74%	0.26%
Other Hexanes	99.95%	0.05%
Heptanes	99.91%	0.09%
Benzene	97.39%	2.61%
Toluone	96 728	3 798
Toruene	90.728	5.200
Ayrenes Cot Neavies	24.305 99.828	0 18%
COT REAVIES	22.023	V.108

FLASH TANK

Flash Control: Recycle/recompressionFlash Temperature:70.0 deg. FFlash Pressure:85.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	100.00%	0.00%
Carbon Dioxide	64.13%	35.87%
Nitrogen	7.85%	92.15%
Methane	8.60%	91.40%
Ethane	26.85%	73.15%
Propane	50.60%	49.40%

		Page:	5
Isobutane	63.33%	36.67%	
n-Butane	70.83%	29.17%	
Isopentane	75.20%	24.80%	
n-Pentane	80.08%	19.92%	
n-Hexane	89.01%	10.99%	
Cyclohexane	96.80%	3.20%	
Other Hexanes	85.37%	14.63%	
Heptanes	94.85%	5.15%	
Benzene	99.72%	0.28%	
Toluene	99.84%	0.16%	
Xylenes	99.95%	0.05%	
C8+ Heavies	99.06%	0.94%	

REGENERATOR

Regenerator Stripping Gas: Dry Product Gas Stripping Gas Flow Rate: 50.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water	18.83%	81.17%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.66%	99.34%
n-Pentane	0.62%	99.38%
n-Hexane	0.56%	99.44%
Cyclohexane	3.31%	96.69%
Other Hexanes	1.17%	98.83%
Heptanes	0.53%	99.47%
Benzene	5.01%	94.99%
Toluene	7.91%	92.09%
Xylenes	12.90%	87.10%
C8+ Heavies	12.11%	87.89%

STREAM REPORTS:

WET GAS STREAM Temperature: 99.00 deg. F Pressure: 1014.70 psia Flow Rate: 5.42e+006 scfh Component Conc. Loading (vol%) (lb/hr) _____ Water 1.20e-001 3.09e+002 Carbon Dioxide 1.29e-001 8.11e+002 Nitrogen 3.98e-001 1.59e+003 Methane 7.45e+001 1.71e+005 Ethane 1.52e+001 6.53e+004 Propane 5.32e+000 3.35e+004 Isobutane 6.46e-001 5.37e+003 n-Butane 1.64e+000 1.36e+004 Isopentane 3.91e-001 4.03e+003 n-Pentane 5.21e-001 5.38e+003 n-Hexane 3.32e-001 4.08e+003 Cyclohexane 3.60e-002 4.33e+002 Other Hexanes 3.65e-001 4.49e+003 Heptanes 2.67e-001 3.82e+003 Benzene 4.00e-003 4.46e+001 Toluene 7.99e-003 1.05e+002 Xylenes 2.00e-003 3.03e+001 C8+ Heavies 1.52e-001 3.70e+003 _____ Total Components 100.00 3.17e+005 DRY GAS STREAM _____ Temperature: 99.00 deg. F Pressure: 1014.70 psia Flow Rate: 5.42e+006 scfh

 Component
 Conc.
 Loading (vol%)

 Water
 1.41e-002
 3.63e+001

 Water
 1.41e-002
 3.63e+001

 Carbon Dioxide
 1.29e-001
 8.10e+002

 Nitrogen
 3.98e-001
 1.59e+003

 Methane
 7.46e+001
 1.71e+005

 Ethane
 1.52e+001
 6.53e+004

 Propane
 5.32e+000
 3.35e+004

 Isobutane
 6.47e-001
 5.37e+003

 n-Butane
 1.64e+000
 1.36e+004
 Isopentane 3.91e-001 4.03e+003 n-Pentane 5.22e-001 5.37e+003 n-Hexane 3.32e-001 4.08e+003 Cyclohexane 3.59e-002 4.31e+002 Other Hexanes 3.65e-001 4.49e+003 Heptanes 2.67e-001 3.82e+003 Benzene 3.90e-003 4.34e+001 Toluene 7.74e-003 1.02e+002 Xylenes 1.89e-003 2.87e+001 C8+ Heavies 1.52e-001 3.69e+003 Total Components 100.00 3.17e+005

Page: 7

LEAN GLYCOL STREAM

Temperature: 99.00 deg. F Flow Rate: 7.50e+000 gpm

Component Conc. Loading (wt%) (lb/hr)TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.53e-012 6.48e-011 Nitrogen 2.74e-013 1.16e-011 Methane 8.39e-018 3.54e-016 Ethane 1.19e-007 5.01e-006 Propane 7.76e-009 3.28e-007 Isobutane 1.12e-009 4.73e-008 n-Butane 3.02e-009 1.28e-007 Isopentane 1.62e-004 6.83e-003 n-Pentane 2.73e-004 1.15e-002 n-Hexane 2.89e-004 1.22e-002 Cyclohexane 8.98e-004 3.79e-002 Other Hexanes 5.03e-004 2.12e-002 Heptanes 4.27e-004 1.80e-002 Benzene 1.45e-003 6.14e-002 Toluene 7.01e-003 2.96e-001 Xylenes 5.76e-003 2.43e-001 C8+ Heavies 2.10e-002 8.88e-001 ----- -------Total Components 100.00 4.22e+003

RICH GLYCOL STREAM

Temperature: 99.00 deg. F

Pressure: 1014.70 psia Flow Rate: 8.17e+000 gpm NOTE: Stream has more than one phase.

(wt%) (1b/hr) TEG 9.12e+001 4.15e+003 Water 7.38e+000 3.36e+002 Carbon Dioxid 1.42e-002 6.48e-001 Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Pentane 5.06e-002 2.12e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (1b/hr)	Component	Conc.	Loading
TEG 9.12e+001 4.15e+003 Water 7.38e+000 3.36e+002 Carbon Dioxide 1.42e-002 6.48e-001 Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.05e+001 Ethane 2.33e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Pentane 5.06e-002 2.31e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.00.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (1b/hr)		(wt%)	(lb/hr)
TEG 9.12e+001 4.15e+003 Water 7.38e+002 3.36e+002 Carbon Dioxide 1.42e-002 6.48e-001 Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)			
Water 7.38e+000 3.36e+002 Carbon Dioxide 1.42e-002 6.48e-001 Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.05e+001 Ethane 2.33e-001 1.05e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.00.00 4.55e+003	TEG	9.12e+001	4.15e+003
Carbon Dioxide 1.42e-002 6.48e-001 Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.05e+001 Ethane 2.32e-001 1.05e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Water	7.38e+000	3.36e+002
Nitrogen 2.54e-003 1.15e-001 Methane 2.32e-001 1.05e+001 Ethane 2.33e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%)	Carbon Dioxide	1.42e-002	6.48e-001
Methane 2.32e-001 1.05e+001 Ethane 2.33e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Pentane 5.06e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Nitrogen	2.54e-003	1.15e-001
Ethane 2.33e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol*) (lb/hr)	Methane	2.32e-001	1.05e+001
Ethane 2.33e-001 1.06e+001 Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol*) (1b/hr)			
Propane 1.77e-001 8.05e+000 Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003	Ethane	2.33e-001	1.06e+001
Isobutane 3.46e-002 1.58e+000 n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (1b/hr)	Propane	1.77e-001	8.05e+000
n-Butane 1.13e-001 5.14e+000 Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Isobutane	3.46e-002	1.58e+000
Isopentane 3.00e-002 1.36e+000 n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003	n-Butane	1.13e-001	5.14e+000
n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.00.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Isopentane	3.00e-002	1.36e+000
n-Pentane 5.06e-002 2.31e+000 n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003			
n-Hexane 5.36e-002 2.44e+000 Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	n-Pentane	5.06e-002	2.31e+000
Cyclohexane 2.60e-002 1.18e+000 Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	n-Hexane	5.36e-002	2.44e+000
Other Hexanes 4.66e-002 2.12e+000 Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (1b/hr)	Cyclohexane	2.60e-002	1.18e+000
Heptanes 7.91e-002 3.60e+000 Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (1b/hr)	Other Hexanes	4.66e-002	2.12e+000
Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Heptanes	7.91e-002	3.60e+000
Benzene 2.70e-002 1.23e+000 Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	·		
Toluene 8.22e-002 3.74e+000 Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Benzene	2.70e-002	1.23e+000
Xylenes 4.14e-002 1.89e+000 C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Toluene	8.22e-002	3.74e+000
C8+ Heavies 1.63e-001 7.40e+000 Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Xylenes	4.14e-002	1.89e+000
Total Components 100.00 4.55e+003 FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	C8+ Heavies	1.63e-001	7.40e+000
FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)			
FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Total Components	100.00	4.550+003
FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)			
FLASH TANK OFF GAS STREAM Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)			
Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	FLASH TANK OFF GAS STREAM		
Temperature: 70.00 deg. F Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)			
Pressure: 99.70 psia Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Temperature: 70.00 deg. F		
Flow Rate: 3.85e+002 scfh Component Conc. Loading (vol%) (lb/hr)	Pressure: 99.70 psia		
Component Conc. Loading (vol%) (lb/hr)	Flow Rate: 3.85e+002 scfh		
Component Conc. Loading (vol%) (lb/hr)			
(vol%) (lb/hr)	Component	Conc.	Loading
		(vol%)	(lb/hr)

(VOI%) (1D/Nr) Water 6.39e-002 1.17e-002 Carbon Dioxide 5.20e-001 2.32e-001 Nitrogen 3.74e-001 1.06e-001 Methane 5.92e+001 9.64e+000 Ethane 2.54e+001 7.77e+000 Propane 8.88e+000 3.98e+000 Isobutane 9.79e-001 5.78e-001 n-Butane 2.54e+000 1.50e+000 Isopentane 4.62e-001 3.38e-001 n-Pentane 6.27e-001 4.59e-001

Page: 9 n-Hexane 3.06e-001 2.68e-001 Cvclohexane 4.43e-002 3.78e-002 Other Hexanes 3.55e-001 3.11e-001 Heptanes 1.82e-001 1.85e-001 Benzene 4.37e-003 3.46e-003 Toluene 6.35e-003 5.94e-003 Xylenes 8.44e-004 9.10e-004 C8+ Heavies 4.00e-002 6.92e-002 _____ Total Components 100.00 2.55e+001 FLASH TANK GLYCOL STREAM _____ ____ Temperature: 70.00 deg. F Flow Rate: 8.11e+000 gpm Component Conc. Loading (wt%) (lb/hr) ----- -----TEG 9.17e+001 4.15e+003 Water 7.43e+000 3.36e+002 Carbon Dioxide 9.18e-003 4.15e-001 Nitrogen 2.00e-004 9.06e-003 Methane 2.00e-002 9.07e-001 Ethane 6.30e-002 2.85e+000 Propane 9.00e-002 4.07e+000 Isobutane 2.20e-002 9.97e-001 n-Butane 8.04e-002 3.64e+000 Isopentane 2.27e-002 1.03e+000 n-Pentane 4.08e-002 1.85e+000 n-Hexane 4.80e-002 2.17e+000 Cyclohexane 2.53e-002 1.15e+000 Other Hexanes 4.00e-002 1.81e+000 Heptanes 7.55e-002 3.42e+000 Benzene 2.70e-002 1.22e+000 Toluene 8.26e-002 3.74e+000 Xylenes 4.16e-002 1.88e+000 C8+ Heavies 1.62e-001 7.33e+000 Total Components 100.00 4.53e+003 FLASH GAS EMISSIONS _____

Control Method: Recycle/recompression Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the

Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM Temperature: 212.00 deg. F Pressure: 14.70 psia Pressure: 14.70 psia Flow Rate: 8.97e+003 scfh Conc. Loading Component (vol%) (lb/hr) ----- -----Water 6.41e+001 2.73e+002 Carbon Dioxide 8.31e-002 8.64e-001 Nitrogen 1.35e-001 8.90e-001 Methane 2.52e+001 9.55e+001 Ethane 5.49e+000 3.90e+001 Propane 2.17e+000 2.26e+001 Isobutane 2.89e-001 3.97e+000 n-Butane 8.13e-001 1.12e+001 Isopentane 1.91e-001 3.25e+000 n-Pentane 2.82e-001 4.81e+000 n-Hexane 2.17e-001 4.42e+000 Cyclohexane 6.77e-002 1.35e+000 Other Hexanes 2.10e-001 4.28e+000 Heptanes 2.33e-001 5.51e+000 Benzene 6.43e-002 1.19e+000 Toluene 1.61e-001 3.50e+000 Xylenes 6.61e-002 1.66e+000 C8+ Heavies 2.11e-001 8.49e+000

Total Components 100.00 4.85e+002

COMBUSTION DEVICE OFF GAS STREAM

_____ Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 6.39e+001 scfh Conc. Loading Component (vol) (lb/hr)----- -----Methane 7.06e+001 1.91e+000 Ethane 1.54e+001 7.80e-001 Propane 6.09e+000 4.53e-001 Isobutane 8.11e-001 7.94e-002 n-Butane 2.28e+000 2.23e-001

Isopentane 5.35e-001 6.50e-002

Page: 11

n-Pentane 7.91e-001 9.62e-002 n-Hexane 6.09e-001 8.84e-002 Cyclohexane 1.90e-001 2.69e-002 Other Hexanes 5.89e-001 8.55e-002 Heptanes 6.53e-001 1.10e-001 Benzene 1.80e-001 2.37e-002 Toluene 4.51e-001 7.00e-002 Xylenes 1.85e-001 3.31e-002 C8+ Heavies 5.92e-001 1.70e-001 Total Components 100.00 4.21e+000

1			Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc					
3	ASDEN Burlington, M	A HYDROCARBON, IN	Unit Set:	NewUser				
4	USA		Date/Time:	Wed Jun 27 16:00:53 2	012	terting of the second		
6	na n							
7	Material Stream	: Spring/Fa	II Flow to	VRU	iuiu Fachage.	Dasis• I		
8				F	roperty Package:	Peng-Robinson		
9			CONDITIONS					
10		Ourself	Manager Change		America Phase			
12	Vapour / Phase Eraction		Vapour Phase		Aqueous Phase			
13	Temperature: (E)	78.97	78.97	78.97	78.97			
14	Pressure: (nsia)	14.10	14.10	14.10	14.10			
15	Molar Flow (MMSCFD)	2.012e-003	2.012e-003	0.0000	0.0000			
16	Mass Flow (lb/hr)	7.708	7.708	0.0000	0.0000			
17	Std Ideal Lig Vol Flow (barrel/day)	1.176	1.176	0.0000	0.0000			
18	Molar Enthalpy (Btu/Ibmole)	-4.366e+004	-4.366e+004	-1.210e+005	-1.230e+005			
19	Molar Entropy (Btu/Ibmole-F)	45.53	45.53	50.29	12.90			
20	Heat Flow (Btu/hr)	-9648	-9648	0.0000	0.0000			
21	Liq Vol Flow @Std Cond (barrel/day)	1.265 *	1.265	0.0000	0.0000			
22	PROPERTIES							
24		Overall	Vapour Phase	Liquid Phase	Aqueous Phase			
25	Molecular Weight	34.88	34.88	133.4	18.02			
26	Molar Density (Ibmole/ft3)	2.464e-003	2.464e-003	0.3377	3.488			
27	Mass Density (Ib/ft3)	8.593e-002	8.593e-002	45.06	62.83			
28	Act. Volume Flow (barrel/day)	383.4	383.4	0.0000	0.0000			
29	Mass Enthalpy (Btu/lb)	-1252	-1252	-906.8	-6828			
30	Mass Entropy (Btu/lb-F)	1.305	1.305	0.3769	0.7158			
31	Heat Capacity (Btu/Ibmole-F)	14.94	14.94	66.40	18.56			
32	Mass Heat Capacity (Btu/lb-F)	0.4284	0.4284	0.4976	1.030			
33	Lower Heating Value (Btu/Ibmole)	6.884e+005	6.884e+005	2.559e+006	6.118e-004			
34	Mass Lower Heating Value (Btu/lb)	1.974e+004	1.974e+004	1.918e+004	3.396e-005			
35	Phase Fraction [Vol. Basis]		1.000	•••				
38	Phase Fraction (Mass Basis)	2.122e-314	1.000	0.0000	0.0000			
37	Partial Pressure of CO2 (psia)	1.971e-002						
38	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	0.0000			
39	Act. Gas Flow (ACFM)	1.495	1.495					
40	Avg. Liq. Density (Ibmole/ft3)	0.8035	0.8035	0.3390	3.458			
41	Specific Heat (Btu/lbmole-F)	14.94	14.94	66.40	18.56			
42	Std. Gas Flow (MMSCFD)	2.013e-003	2.013e-003	0.0000	0.0000			
43	Std. Ideal Liq. Mass Density (ib/ft3)	28.03	28.03	45.23	62.30			
44	Act. Liq. Flow (USGPM)	0.0000		7 000 - 000	0.000			
45	Z Factor	-	0.9901	1.2238-003	0.8546-004			
46	Watson K	19.66	10.00	12.03	0.010	·····		
47	User Property							
48	Partial Pressure of H25 (psia)	1 153	1 153	1 031	1.120			
48		1.100	1 160	1.031	1.148			
3U £4	Heat of Van (Riu/Ihmola)	1.189e+004				•		
<u>82</u>	Kinematic Viscosity (cSt)	6.892	6.892	1.064	0.8630			
51	Lin Mass Density (Std. Cond) (lb/ft3)	26.04	26.04	45.58	63.33			
54	Lig. Vol. Flow (Std. Cond) (harrel/day)	1,265	1.265	0.0000	0.0000			
55	Liquid Fraction	0.0000	0.0000	1.000	1.000			
56	Molar Volume (ft3/lbmole)	405.9	405.9	2.961	0.2867			
57	Mass Heat of Vap. (Btu/lb)	340.9	•••					
58	Phase Fraction (Molar Basis)	1.0000	1.0000	0.0000	0.0000)		
59	Surface Tension (dyne/cm)			21.34	71.91			
60	Thermal Conductivity (Btu/hr-ft-F)	1.273e-002	1.273e-002	7.252e-002	0.3540			
61	Viscosity (cP)	9.486e-003	9.486e-003	0.7682	0.8686			
62	Cv (Semi-Ideal) (Btu/Ibmole-F)	12.96	12.96	64.41	16.57			
63	Mass Cv (Semi-Ideal) (Btu/Ib-F)	0.3714	0.3714	0.4828	0.9200			
64	Cv (Btu/lbmole-F)	12.88	12.88	64.41	16.17	7		

Aspen HYSYS Version 7.1 (23.0.0.7119)

111

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN
MARKWEST HYDROCARBON, IN Burlington, MA USA

Unit Set: ٦.;

Case Name:

NewUser

Wed Jun 27 16:00:53 2012

,

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Ę.

5					I	Date/Time:	Wed	Jun 27 16:00:53 20	12	
6								Ęŀ.	id Packager Ber	sis-1
7	Materia	Stream	m:	Sprina/I	Fall	Flow to	VF	RU (con 🗂	ivi avnaya. Dat	71 9 -1
8				-6				Pro	perty Package: Per	ng-Robinson
9					P	BODEDTIES				
10					۲	NUPER 11E3				
11				Overall	Va	apour Phase		Liquid Phase	Aqueous Phase	
12	Mass Cv	(Btu/lb-F)		0.3694		0.3694		0.4828	0.8976	
13	Cv (Ent. Method) (B	tu/ibmole-F)							15.80	
14	Mass Cv (Ent. Method)	(Btu/lb-F)		•••					0.8770	
15	Cp/Cv (Ent. Method)								1.175	
16	Reid VP at 37.8 C	(psia)	• •• •• ••	651.3		651.3		8.854		
17	True VP at 37.8 C	(psia)		1133	l	1133		17.10	5.715	
18	Liq. Vol. Flow - Sum(Std.	Qbadjel/day)		1.265		1.265		0.0000	0.0000	
19	Viscosity Index			••••	L			-1.193	-0.6629	
20					C	OMPOSITION				
21										· · · · · · · · · · · · · · · · · · ·
22					Ove	rall Phase			Vapour F	raction 1.0000
23							<u>, 1</u>	MACO 7040701		
24	COMPONENTS	MOLAR FL	DW .	MOLE FRACT	ION	MASS FLOW	/ ·	MASS FRACTION		
25	Mathema	(IDMOIe/N	1)		070		02	0 4446	D 2404	0.2121
26	Meinane	0.0	0600	0.3	010	1.09	20	U.1415 0.3213	0.2494	0.2121
27	Einane	0.	0393	0.2	072	1./8	20	0.2312	0.0431	0.2010
28	Propane	0.	0439	U.2	210	2.02	<u>00</u>	0.2020	0,2134	0.2020
29	I-Butane	0.	0071	0.0	1318	U.41	21	0.0002	0.0000	0.0420 0 1050
30	n-Butane	0.	0182	0.0	1020	1.00	42	0.13/0	0.1240	0.1039
31		0.	0042	0.0	191	0.30	43 70	0.0393	0.0334	0.0204
32	n-Pentane	0.	0054	0.0	243	0.38	70	0.0502	0.0421	0.0358
33	3-Mhexane	0.	0011	0.0	060	0.10	14	0.0139	0.0107	0.0091
34	n-Hexane	0.	0011	0.0	1052	0.09	02	0.0127	0.0101	0.0000
35	Benzene	0.	0000	0.0		0.00	20	0.0001	0.0001	0.0001
36	Cyclohexane	0.	0002	0.0	007	0.01	29	0.0017	0.0011	0.0010
37	23-Mpentane	0.	0009	0.0	1040	0.08	80	0.0115	0.0087	0.00/4
38	n-Heptane	0.	0006	0.0	025	0.05	38	0.0072	0.0056	0.0047
39	Toluene	0.	0001	0.0	AUUZ	0.00	40	0.0008	0.0004	0.0003
40	2-Mheptane		0007	0.0	1033	0.08	35	0.0108	0.0082	0.009
ᆀ	n-Octane	0.	0002	0.0	1007	0.01	() 10	0.0023	0.0017	0.0014
42	E-Benzene	0.	0000	0.0		0.00	13	0.0002	0.0001	0.0001
43	o-Xylene	0.	0000	0.0		0.00	40	0.0003	0.0002	0.0002
44	n-Nonane	0.	0001	0.0	1004	0.01		0.0014	0.0010	0.0008
45	n-Decane	0.	0000	0.0	002	0.00	49	0.0006	0.0005	0.0004
46	n-C11	0.	0000	0.0	0000	0.00	11/	0.0002	0.0002	0.0001
47	n-C12	0.	0000	0.0	1001	0.00	41	0.0006	0.0004	0.0004
48	H2O	0.	0076	0.0	1342	0.13	103	0.01/7	0.0094	0.0000
49	Nitrogen	0.	0002	0.0	1007	0.00	46	0.0006	0.0004	0.0003
50	CO2	0.	0003	0.0	JU14	0.01	30	0.0018	0.0011	0.0010
51	Oxygen	<u> </u>	0000			0.00		0.0000	4 4755	1 0000
52	Total	I0.	2210	<u> </u>	0000	/.70	//0	1.0000	1.1/00	1.0000
53					Vap	our Phase			Phase F	raction 1.000
54			0147	NOLE CRACK		MARCEION	v	MASS EPACTION		
33	COMPONENTS	INULAK FL			NUN	(ib/hr)	•		FLOW (barrel/dav)	FRACTION
00 87	Methane	(10/11/0/10/1 A	0680	0.4	3076	1 09	903	0.1415	0.2494	0.2121
50	Ethane	<u>م</u>	0593	n 2	2682	1.78	320	0.2312	0.3431	0.2918
50	Pronene	م	0459	0.	2076	2 02	230	0.2625	0.2734	0.2326
3	i-Rutane	<u>ر</u> م	0071	0.4	0319	0.41	101	0.0532	0.0500	0.0425
61	n-Butana	· · · · · · · · · · · · · · ·	0182	0.0	0826	1.06	503	0.1376	0.1245	0.1059
62	i-Pentane	0	.0042	0.0	0191	0.30)43	0.0395	0.0334	0.0284
82	n-Pentane	<u> </u>	0054	0.0	0243	0.38	370	0.0502	0.0421	0.0358
84	3-Mhexane	<u>م</u>	0011		0049	0.10)74	0.0139	0.0107	0.0091
	Luncolach 114	<u> </u>		Aspen	HYSY	S Version 7 1 (23.0	0 7119)		Page 2 of 23

MARKWEST HYDROCARBON, IN Burlington, MA USA Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Unit Set: NewUser

Date/Time: W

Wed Jun 27 16:00:53 2012

2

99 A. A. A.

6	Material Stream: Spring/Fall Flow to VRU (con Fluid Package: Basis-1									
8	IVIALEII	ai Sultaili.	Springiran			perty Package: Pen	g-Robinson			
10			C	OMPOSITION						
11 12			Vapour Ph	ase (continued)		Phase Fra	iction 1.000			
13 14	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
15	n-Hexane	0.0011	0.0052	0.0982	0.0127	0.0101	0.0086			
16	Benzene	0.0000	0.0001	0.0010	0.0001	0.0001	0.0001			
17	Cyclohexane	0.0002	0.0007	0.0129	0.0017	0.0011	0.0010			
18	23-Mpentane	0.0009	0.0040	0.0890	0.0115	0.0087	0.0074			
19	n-Heptane	0.0006	0.0025	0.0558	0.0072	0.0056	0.0047			
20	Toluene	0.0001	0.0002	0.0046	0.0006	0.0004	0.0003			
21	2-Mheptane	0.0007	0.0033	0.0835	0.0108	0.0082	0.0069			
22	n-Octane	0.0002	0.0007	0.0175	0.0023	0.0017	0.0014			
23	E-Benzene	0.0000	0.0001	0.0013	0.0002	0.0001	0.0001			
24	o-Xylene	0.0000	0.0001	0.0025	0.0003	0.0002	0.0002			
25	n-Nonane	0.0001	0.0004	0.0110	0.0014	0.0010	0.0009			
26	n-Decane	0.0000	0.0002	0.0049	0.0006	0.0005	0.0004			
27	n-C11	0.0000	0.0000	0.0017	0.0002	0.0002	0.0001			
28	n-C12	0.0000	0.0001	0.0047	0.0006	0.0004	0.0004			
29	H2O	0.0076	0.0342	0.1363	0.0177	0.0094	0.0080			
30	Nitrogen	0.0002	0.0007	0.0046	0.0006	0.0004	0.0003			
31	CO2	0.0003	0.0014	0.0136	0.0018	0.0011	0.0010			
32	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000_			
33	Total	0.2210	1.0000	7.7076	1.0000	1.1755	1.0000			
34 35			Liqu	uid Phase		Phase Fra	action 0.0000			
36		1								
37	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME			
37 38	COMPONENTS	MOLAR FLOW (Ibmole/hr)	MOLE FRACTION	MASS FLOW (ib/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
37 38 39	COMPONENTS Methane	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073	MASS FLOW (ib/hr) 0.0000	MASS FRACTION 0.0002 0.0017	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034			
37 38 39 40	COMPONENTS Methane Ethane	MOLAR FLOW (Ibmole/hr) 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207	MASS FLOW (ib/hr) 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098			
37 38 39 40	COMPONENTS Methane Ethane Propane LButane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047			
37 38 39 40 41	COMPONENTS Methane Ethane Propane I-Butane Butane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163			
37 38 39 40 41 42 43	COMPONENTS Methane Ethane Propane I-Butane n-Butane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114			
37 38 39 40 41 42 43 44	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191			
37 38 39 40 41 42 43 44 45	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396			
37 38 39 40 41 42 43 44 45 46	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154			
37 38 39 40 41 42 43 44 45 46 47	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane Benzene	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001			
37 38 39 40 41 42 43 44 45 46 47 48	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021			
37 38 39 40 41 42 43 44 45 46 47 48 49	COMPONENTS Methane Ethane Propane I-Butane n-Butane n-Butane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Moentane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296			
37 38 39 40 41 42 43 44 45 46 47 48 9 50	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane n-Heptane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.0033 0.0033 0.0034 0.0033 0.0033 0.0034 0.0033 0.0033 0.0035 0.005	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0225 0.0258 0.0022	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.000000 0.00000000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0909			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	COMPONENTS Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0909 0.0267			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	COMPONENTS Methane Ethane Propane I-Butane n-Butane i-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0019 0.0019 0.0010 0.0010 0.0020 0.0010 0.0010 0.0010 0.0010 0.0001 0.0002 0.0025 0.002	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0226 0.0272 0.0019 0.0909 0.0267 0.0016			
37 38 39 40 41 42 43 44 45 46 47 48 99 50 51 52 53 54 55	COMPONENTS Methane Ethane Propane I-Butane n-Butane i-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.0061	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.00258 0.0022 0.0880 0.0260 0.0019 0.0048 0.00	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0909 0.0267 0.0016 0.0040			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	COMPONENTS Methane Ethane Propane I-Butane n-Butane i-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Totuene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane	MOLAR FLOW (lbmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0021 0.0024 0.00522 0.0522	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000000	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0909 0.0267 0.0016 0.0040 0.0504			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	COMPONENTS Methane Ethane Propane I-Butane I-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Totuene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.00522 0.0629 0.0629 0.0615 0.0522 0.0629 0.0615 0.0522 0.0629 0.0615 0.0522 0.0629 0.0615 0.0522 0.0629 0.0615 0.0522 0.0629 0.0615 0.0015 0.0015 0.0073 0.0207 0.0083 0.0207 0.0302 0.0307 0.0503 0.0218 0.0032 0.0034 0.0034 0.0024 0.00522 0.0629 0.0629 0.0629 0.0021 0.005 0.00	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0228 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0671 0.0671 0.0071 0.0071 0.0002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000 0.00000 0.0000000 0.0000000 0.000000 0.00000000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0298 0.0272 0.0019 0.0298 0.0272 0.0019 0.0267 0.0016 0.0040 0.0504 0.0504			
37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57 58	COMPONENTS Methane Ethane Propane I-Butane I-Pentane I-Pentane 3-Mhexane N-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-C11	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.0051 0.0522 0.0629 0.0608 0.0008 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0000 0.0002 0.00000 0.00000 0.00000 0.	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.071 0.0712 0.071 0.0712 0.071 0.07	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0298 0.0272 0.0019 0.0298 0.0272 0.0019 0.0267 0.0016 0.0040 0.0504 0.0684 0.0695			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	COMPONENTS Methane Ethane Propane I-Butane I-Pentane I-Pentane 3-Mhexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Decane n-Decane n-C11 n-C12	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0051 0.0522 0.0629 0.0608 0.4136 0.015 0.0015 0.0218 0.0218 0.0218 0.002 0.003 0.033 0.0218 0.003 0.0218 0.003 0.034 0.003 0.024 0.005 0.0522 0.0608 0.4136 0.4136 0.018 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.005	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.5280	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0909 0.0267 0.0016 0.0040 0.0504 0.0684 0.0695 0.5093			
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 6 7 8 5 5 5 5 5 5 5 5 5 8 5 8 5 8	COMPONENTS Methane Ethane Propane I-Butane I-Pentane I-Pentane 3-Mhexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Decane n-Decane n-C11 n-C12 H2O	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0051 0.0522 0.0629 0.0608 0.4136 0.0005 0.000	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.5280 0.0001	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0909 0.0267 0.0016 0.0040 0.0504 0.0684 0.0695 0.5093 0.0000			
3 3 3 40 41 42 43 44 45 46 47 48 49 50 51 53 53 55 55 55 55 58 57 58 59 60 61	COMPONENTS Methane Ethane Propane I-Butane I-Pentane I-Pentane 3-Mhexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Decane n-Decane n-C11 n-C12 H2O Nitrogen	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0051 0.0522 0.0629 0.0608 0.4136 0.0005 0.0000 0.000	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0258 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.5280 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0909 0.0267 0.0016 0.0040 0.0504 0.0684 0.0695 0.5093 0.0000 0.0000			
3 3 4 4 4 4 4 4 5 5 3 3 5 6 7 8 9 6 6 6 6 7 8 9 8 6 6 6 7 8 9 8 6 6 6 7 8	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane 3-Mhexane Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Decane n-Decane n-C11 n-C12 H2O Nitrogen CO2	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.0021 0.0024 0.0025 0.0005 0.0000 0.000	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.05280 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00000 0.0000 0.00000 0.0000 0.0000 0.0000 0.	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0267 0.0016 0.0040 0.0504 0.0504 0.0664 0.0695 0.5093 0.0000 0.0000			
3 3 4 4 4 4 4 9 5 5 3 5	COMPONENTS Methane Ethane Propane I-Butane n-Butane n-Pentane 3-Mhexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Decane n-Decane n-C11 n-C12 H2O Nitrogen CO2 Oxygen	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.0021 0.0022 0.0024 0.0022 0.0629 0.0608 0.4136 0.0005 0.0000 0.000	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0022 0.0880 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.5280 0.0001 0.0001 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0001 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0267 0.0016 0.0040 0.0504 0.0504 0.05093 0.0000 0.0000 0.0000			
3 3 4 4 4 4 4 8 5 3 3 5 8 7 8 9 8 5 3 3 5 8 7 8 9 8 5 3 3 3 5 8 7 8 9 8 5 3 3 3 5 8 7 8 9 8 5 3 3 3 5 8 7 8 9 8 5 3 3 3 5 8 7 8 9 8 5 3 3 3 5 8 7 8 9 8 5 3 3 3 3 5 8 7 8 8 5 3	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane R-Pentane 3-Mhexane Cyclohexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-C11 n-C12 H2O Nitrogen CO2 Oxygen Total	MOLAR FLOW (lbmole/hr) 0.0000	MOLE FRACTION 0.0015 0.0073 0.0207 0.0083 0.0302 0.0181 0.0307 0.0503 0.0218 0.0002 0.0036 0.0379 0.0344 0.0033 0.1027 0.0304 0.0024 0.0024 0.0061 0.0522 0.0629 0.0608 0.4136 0.0005 0.0000 0.000	MASS FLOW (lb/hr) 0.0000	MASS FRACTION 0.0002 0.0017 0.0069 0.0036 0.0131 0.0098 0.0166 0.0377 0.0141 0.0001 0.0022 0.0285 0.0228 0.0258 0.0228 0.0228 0.0285 0.0228 0.0228 0.0285 0.0228 0.0260 0.0019 0.0048 0.0501 0.0671 0.0712 0.5280 0.0001 0.0001 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0004 0.0034 0.0098 0.0047 0.0163 0.0114 0.0191 0.0396 0.0154 0.0011 0.0021 0.0296 0.0272 0.0019 0.0296 0.0272 0.0019 0.0267 0.0016 0.0040 0.0504 0.0504 0.0685 0.5093 0.0000 0.0000 0.0000			

1		MARKWEST HYDROCARBON, IN				D MMSCFD 8-29-2012.hsc				
3	asnen	Burlington, MA	YDROCARBON, IN	Unit Set:	Unit Set: NewUser					
4	aspen	USA		Date/Time:	Wed Jun 27 16:00:53 20	12				
6		• • •	Fluid Package: Basis-1							
7	Materia	I Stream:	Spring/F	all Flow to	VRU (con _{Pr}	operty Package: Per	g-Robinson			
9				COMPOSITION		· · · · · · · · · · · · · · · · · · ·				
10				COMPOSITION						
12			A	queous Phase		Phase Fra	action 0.0000			
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTIO	ON MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
15	Methane	0,000,0	0.00	00 0 00	0.0000	0.0000	0.0000			
16	Fibana	0.000	0.00	00 0 00	00000	0,0000	0.0000			
17	Brooppo	0.0000	0.00			0.0000	0.0000			
10	- Putana	0.0000	0.00			0.0000	0.0000			
10	I-Butane	0.0000	0.00			0.0000	0.0000			
19	n-Butane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
20	i-Pentane	0.0000	0.00	00 0.00	0.0000	0.0000	0.0000			
21	n-Pentane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
22	3-Mhexane	0.0000	0.00	00 0.00	0.0000	0.0000	0.0000			
23	n-Hexane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
24	Benzene	0.0000	0.00	00 0.00	0000.0	0.0000	0.0000			
25	Cyclohexane	0.0000	0.00	00 0.00	0000.0	0.0000	0.0000			
26	23-Mpentane	0.0000	0.00	00 0.00	0000.0	0.0000	0.0000			
27	n-Heptane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
28	Tohiene	0 000	0.00	00 0.00	0.0000	0.0000	0.0000			
20	2 Mhontano	0.0000	0.00	00 0.00	00 0.0000	0,0000	0 0000			
28	z-wineptane	0.0000	0.00			0.0000	0.0000			
30	n-Octane	0.0000	0.00			0.0000	0.0000			
31	E-Benzene	0.0004	0.00	00 0.00		0.0000	0.0000			
32	o-Xylene	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
33	n-Nonane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
34	n-Decane	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
35	n-C11	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
36	n-C12	0.0000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
37	H2O	0.0000	1.00	00 0.00	00 1.0000	0.0000	1.0000			
38	Nitrogen	0.0000	0.00	00.00	00 0.0000	0.0000	0.0000			
39	CO2	0.0000	0.00	0.00	00 0.0000	0.0000	0.0000			
40	Oxvaen	0.000	0.00	00 0.00	00 0.0000	0.0000	0.0000			
41	Total	0.000	1.00	00 0.00	00 1.0000	0.0000	1.0000			
42					e1	uid Dookogou Pos	vio 1			
43	Materia	I Stream:	Winter F	low to VRL	J @TPL4	ulu Fackage. Das	013-1			
44					Pi	roperty Package: Per	ig-Robinson			
45 46				CONDITIONS						
47			Overail	Vapour Phase	Liquid Phase	Aquecus Phase				
48	Vanour / Phase Eraction		1.0000	1,0000	0.0000	0.0000				
40	Temperature:	(F)	48.05	46.05	46.05	46.05	· ·			
60	Pressure'	(05ia)	14 10	14.10	14.10	14.10				
6.	Molar Clour	(MMSCED)	1 2780-002	1 278-002	0 0000	0 0000				
101			AG 42	1.2100-002 AQ 49	0.0000	0.0000				
52	Niass Plow	(w/m)	48.43	7 623	0.0000	0.0000				
53	Std Ideal Liq Vol Flow	(Darrevoay)	1.032	1.032	1.0020+0.005	1 2280+005				
54	Molar Enthalpy		-4.2458+004	-9.2488+004	-1.0030+005	-1.23087003				
55	Molar Entropy (B	tu/lbmole-F)	44.42	44.42	33.62	11./2				
56	Heat Flow	(Btu/hr)	-5.9630+004	-5.9638+004	0.0000	0.0000				
57	Liq Vol Flow @Std Cond	(barrel/day)	8.263 •	8.263	0.0000	0.0000				
58				PROPERTIES						

PROPERTIES

59							
60		· · · · · · ·	Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
61	Molecular Weight		35.22	35.22	104.9	18.02	·
62	Molar Density	(lbmole/ft3)	2.630e-003	2.630e-003	0.4213	3.535	
63	Mass Density	(lb/ft3)	9.261e-002	9.261e-002	44.18	63.68	
64	Act. Volume Flow	(barrel/day)	2281	2281	0.0000_	0.0000	
65	Hyprotech I td		Aspen H	YSYS Version 7.1 (23	3.0.0.7119)		Page 4 of 23

1

Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

2				Case Mame: Si	INIULITIATA 130 MMAL	FD 0-29-2012.05C	
3	achon	Burlington, MA		Unit Set: N	ewUser		
4	ashen	USA		Date/Time: W	/ed Jun 27 16:00:53 201	2	, energy (* 1997) 1997 - Carlos Maria, and Carlos (* 1997) 1997 - Carlos Maria, and Carlos (* 1997) 1997 - Carlos Maria, and Carlos (* 1997)
6 7 8	Material	Stream:	Winter Fl	ow to VRU	@TPL4 ((^{Flui} Pro	d Package: Bas perty Package: Pen	is-1 g-Robinson
θ				PROPERTIES			
10		I	O			•	
11	Mass Entheter	(Dhuffb)	Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
12	Mass Enthalpy		-1206	-1206	-900.2	-0802	
13	Mass Entropy Heat Canacity (Btu	(BIU/ID-F)	14 45	14.45	0.3205	18 59	
15	Mass Heat Canacity	(Btu/lb-F)	0 4102	0 4102	0 4842	1 032	
16	Lower Heating Value (B	tu/ibmole)	7.044e+005	7.044e+005	2.019e+006	1.762e-004	·····•
17	Mass Lower Heating Value	(Btu/lb)	2.000e+004	2.000e+004	1.925e+004	9.782e-006	
18	Phase Fraction (Vol. Basis)			1.000	_	_	
19	Phase Fraction (Mass Basis]	2.122e-314	1.000	0.0000	0.0000	
20	Partial Pressure of CO2	(psia)	1.556e-002				
21	Cost Based on Flow	(Cost/s)	0.0000	0.0000	0.0000	0.0000	
22	Act. Gas Flow	(ACFM)	8.895	8.895			
23	Avg. Liq. Density (I	bmole/ft3)	0.7860	0.7860	0.4130	3.458	
24	Specific Heat (Btu	lbmcle-F)	14.45	14.45	50.78	18.59	
25	Std. Gas Flow (N	MMSCFD)	1.278e-002	1.278e-002	0.0000	0.0000	· · · · · · · · · · · · · · · · · · ·
26	Std. Ideal Liq. Mass Density	(16/ft3)	27.68	27.68	43.32	62.30	
27	Act. Liq. Flow	(USGPM)	0.0000		 6 4676 002	7 2400 004	
28	Z Factor		16.05	15.05	0.1070-003	7.3498-004	
29	Lieer Dronerty		13.85			0.003	
31	Partial Pressure of H2S	(osia)	0.000				
32	Co/(Co - R)	120107	1.159	1.159	1.041	1.120	
33	Cp/Cv		1.167	1.167	1.041	1.135	
34	Heat of Vap. (B	tu/lbmole)	1.105e+004				
35	Kinematic Viscosity	(cSt)	5.997	5.997	0.8001	1.355	
36	Liq. Mass Density (Std. Con	d) (lb/ft3)	25.57	25.57	43.77	63.33	
37	Liq. Vol. Flow (Std. Cond) (b	arret/day)	8.263	8.263	0.0000	0.0000	
38	Liquid Fraction		0.0000	0.0000	1.000	1.000	
39	Molar Volume (f	t3/lbmole)	380.3	380.3	2.374	0.2829	
40	Mass Heat of Vap.	(Btu/ib)	313.7				
41	Phase Fraction [Molar Basis		1.0000	1.0000	0.0000	0.0000	
42	Surface Tension	(dyne/cm)	4 4520 002	1 1520 002	20.07	0.3360	
43	Inermal Conductivity (C	(cP)	8.8970-002	8.8978-002	0.5663	1 383	
44	Cy (Semi-Ideal) (Biu	(bmole-F)	12 48	12.46	48.79	16.60	
46	Mass Cy (Semi-Ideal)	(Btu/ib-F)	0.3539	0.3539	0.4652	0.9215	
47	Cv (Btu	/ibmole-F)	12.38	12.38	48.79	16.38	····· · · · · · · · · · · · · · · · ·
48	Mass Cv	(Btu/lb-F)	0.3514	0.3514	0.4652	0.9093	
49	Cv (Ent. Method) (Btu	/ibmole-F)		•••		16.10	
50	Mass Cv (Ent. Method)	(Btu/lb-F)				0.8940	
51	Cp/Cv (Ent. Method)					1.154	
52	Reid VP at 37.8 C	(psia)	631.3	631.3	15.75	••••	
53	True VP at 37.8 C	(psia)	1071	1071	25.06	2.016	
54	Liq. Vol. Flow - Sum(Std. Qt	padjel/day)	8.263	8.263	0.0000	0.0000	
55	VISCOSITY INDEX		***		-1.098	-0.2310	
56 57				COMPOSITION			
58 59				Overall Phase		Vapour F	raction 1.0000
60 61	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTIO	ON MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
62	Methane	0.4115	0.293	6.6023	0.1336	1.5100	0.1978
63	Ethane	0.4119	0.293	12.3871	0.2506	2.3847	0.3124
64	Propane	0.3164	0.225	55 13.9544	0.2823	1.8858	0.2471
65	Hyprotech Ltd.		Aspen HY	SYS Version 7.1 (23	.0.0.7119)	and the second	Page 5 of 23_

Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

Page 5 of 23 * Specified by user.

÷	MARKWEST HYDROCARBON,			Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc						
3	aspen	Burlington, MA	DRUCARBUN, IN	Unit Set: New	/User					
4		USA		Date/Time: Wed	1 Jun 27 16:00:53 201	2				
6		• • •			Flui	d Package: Basi	s-1			
7	Materia	al Stream:	Winter Flo	ow to VRU @	DTPL4 ((_{Pro}	perty Package: Pen	g-Robinson			
9				COMPOSITION						
10					· · · · · · · · · · · · · · · · · · ·					
12			Overall	Phase (continued)		Vapour Fr	action 1.0000			
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	I MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
15	i-Butane	0.0461	0.0329	2.6819	0.0543	0.3268	0.0428			
16	n-Butane	0.1172	0.0835	6.8126	0.1378	0.7998	0.1048			
17	i-Pentane	0.0258	0.0184	1.8632	0.0377	0.2046	0.0268			
18	n-Pentane	0.0324	0.0231	2.3374	0.0473	0.2542	0.0333			
19	3-Mhexane	0.0056	0.0040	0.5624	0.0114	0.0558	0.0073			
20	n-Hexane	0.0065	0.0046	0.5574	0.0113	0.0576	0.0075			
21	Benzene	0.0001	0.0001	0.0057	0.0001	0.0004	0.0001			
22	Cyclohexane	0.0009	0.0006	0.0723	0.0015	0.0063	0.0008			
23	23-Mpentane	0.0047	0.0034	0.4717	0.0095	0.0463	0.0061			
24	n-Heptane	0.0028	0.0020	0.2806	0.0057	0.0280	0.0037			
25	Toluene	0.0002	0.0002	0.0230	0.0005	0.0018	0.0002			
26	2-Mheptane	0.0031	0.0022	0.3500	0.0071	0.0342	0.0045			
27	n-Octane	0.0006	0.0004	0.0050	0.0013	0.0003	0.0000			
28	E-Benzene	0.0000	0.0000	0.0040	0.0001	0.0004	0.0000			
20	o-Aylene	0.0001	0.0001	0.0002	0.0002	0.0000	0.0001			
3U 24	n-Nullane	0.0002	0.0001	0.0229	0.0000	0.0022	0.0000			
31 22	n-Decane	0.0000	0.0000	0.0048	0.0001	0.0003	0.0000			
32	n-C12	0.0000	0.0000	0.0016	0.0000	0.0001	0.0000			
24	H2O	0.0000	0.0106	0.2682	0.0054	0.0184	0.0024			
35	Nitronen	0.0008	0.0006	0.0219	0.0004	0.0019	0.0002			
36	CO2	0.0015	0.0011	0.0681	0.0014	0.0057	0.0007			
37	Oxvgen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
38	Total	1.4035	1.0000	49.4286	1.0000	7.6324	1.0000			
39 40			Va	apour Phase		Phase Fra	action 1.000			
41 42										
	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
2 43	COMPONENTS Methane	MOLAR FLOW (ibmole/hr) 0,4115	MOLE FRACTION	MASS FLOW (lb/hr) 6.6023	MASS FRACTION 0.1336	LIQUID VOLUME FLOW (barrel/day) 1.5100	LIQUID VOLUME FRACTION 0.1978			
→2 43 44	COMPONENTS Methane Ethane	MOLAR FLOW (Ibmole/hr) 0.4115 0.4119	MOLE FRACTION 0.2932 0.2935	MASS FLOW (lb/hr) 6.6023 12.3871	MASS FRACTION 0.1336 0.2506	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847	LIQUID VOLUME FRACTION 0.1978 0.3124			
+4 43 44 45	COMPONENTS Methane Ethane Propane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164	MOLE FRACTION 0.2932 0.2935 0.2255	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544	MASS FRACTION 0.1336 0.2506 0.2823	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471			
→2 43 44 45	COMPONENTS Methane Ethane Propane i-Butane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819	MASS FRACTION 0.1336 0.2506 0.2823 0.0543	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428			
43 44 45 46 47	COMPONENTS Methane Ethane Propane i-Butane n-Butane	MOLAR FLOW (lbmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0335	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048			
+2 43 44 45 46 47 48	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane	MOLAR FLOW (lbmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0335 0.0184	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268			
43 44 45 46 47 48 49	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333			
43 44 45 46 47 48 49 50	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073			
43 44 45 46 47 48 49 50 51	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0324 0.0056	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040 0.0046	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 6.0.5574	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075			
¥ 43 44 45 46 47 48 49 50 51 52	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0324 0.0056 0.0065 0.0001	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0836 0.0184 0.0231 0.0040 0.0046 0.0001	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.5574 0.0057	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0001	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001			
43 44 45 46 47 48 49 50 51 52 53	COMPONENTS Methane Ethane Propane i-Butane i-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0258 0.0324 0.0056 0.0065 0.0001 0.0009	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040 0.0040 0.0046 0.0001 0.0000	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.5574 0.0057 0.0723	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0001 0.0015	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008			
43 44 45 46 47 48 49 50 51 52 53 54	COMPONENTS Methane Ethane Propane i-Butane i-Butane i-Pentane a-Mhexane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0258 0.0324 0.0056 0.0065 0.0001 0.0009 0.0047	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040 0.0040 0.0046 0.0001 0.0006 0.0006	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.5574 0.0057 0.0723 0.4717	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0001 0.0015 0.0095 0.005	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0073 0.0075 0.0001 0.0008 0.0081			
+4 45 46 47 48 49 50 51 52 53 54 55	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0356 0.0056 0.0065 0.0001 0.0009 0.0047 0.0028	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0004	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.5574 0.0057 6.0.0723 0.4717 0.2806	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0011 0.0015 0.0095 0.0057 0.005	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.0037			
14 14 15 16 17 18 19 10 15 <th15< th=""> 15 15 15<!--</td--><td>COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene</td><td>MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056 0.0056 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002</td><td>MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0046 0.0046 0.0046 0.0004</td><td>MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.4717 0.2806 2.0.0230</td><td>MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0015 0.0095 0.0057 0.0055 0.0057 0.0057 0.0057 0.0057 0.0055 0.0057 0.005 0.0057 0.005 0.0</td><td>LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018</td><td>LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.00428 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.00037 0.0002</td></th15<>	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056 0.0056 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0046 0.0046 0.0046 0.0004	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.4717 0.2806 2.0.0230	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0015 0.0095 0.0057 0.0055 0.0057 0.0057 0.0057 0.0057 0.0055 0.0057 0.005 0.0057 0.005 0.0	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.00428 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.00037 0.0002			
* 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 52	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002 0.0002	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040 0.0040 0.0046	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.0723 0.0723 0.02300 0.02500	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0015 0.0095 0.0057 0.0005 0.0005 0.0071 0.0072 0.0072 0.0071 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.0	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0083	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.00428 0.0333 0.0073 0.0075 0.0001 0.0008 0.0001 0.0008 0.0001 0.0002 0.0045 0.0008			
* 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 52	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056 0.0005 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002 0.0002 0.0002	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0040 0.0040 0.0044 0.0004	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.0723 0.0723 0.0230 2.0.0230 0.0650	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.1378 0.0377 0.0473 0.0114 0.0113 0.0001 0.0005 0.0005 0.0071 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0015 0.0014 0.0014 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0005 0.0005 0.0015 0.0015 0.0015 0.0005 0.0015 0.0015 0.0005 0.001	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.0008 0.0002 0.0045 0.0008			
Y Q	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane a-Mhexane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane n-Heptane n-Octane E-Benzene a-Yikene	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0324 0.0056 0.0065 0.0001 0.0009 0.0047 0.0028 0.0002 0.0031 0.0008	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0231 0.0046	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.0723 0.07230 0.07230 0.02300 0.0650 0.0046	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0001 0.0095 0.0005 0.0005 0.0005 0.0001 0.0001 0.0001 0.0001 0.0002 0.000	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0001 0.0008 0.0005 0.0002 0.0045 0.0008 0.0000 0.0001			
1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonare	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0258 0.0324 0.0056 0.0065 0.0001 0.0009 0.0047 0.0028 0.0002 0.0001 0.0000 0.0001 0.0000	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0040 0.0040 0.0040 0.0001 0.0006 0.0002	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.05574 0.0057 0.0723 0.0723 0.07230 2.0.02300 2.0.02300 0.00850 0.00082 0.0229	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0001 0.0015 0.0095 0.0005 0.0005 0.0001 0.0001 0.0001 0.0002 0.0005 0.0002 0.0005 0.000	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063 0.0004 0.00063 0.0004	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.00037 0.0002 0.0045 0.0000 0.0001 0.0001 0.0003			
1 3 4 4 4 4 9 5	COMPONENTS Methane Ethane Propane i-Butane n-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Nonane n-Decane	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.0258 0.0025 0.0005 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002 0.0001 0.0000 0.0001 0.0000	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0046 0.00046 0	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.5624 0.5574 0.0057 0.0723 0.0723 0.0723 0.07230 2.0.02300 2.0.02300 0.0046 0.0082 0.0229	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0001 0.0015 0.0095 0.0057 0.0005 0.0001 0.0001 0.0001 0.0001 0.0005 0.000	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063 0.0004 0.0006 0.0002 0.0005	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.00037 0.0002 0.0045 0.0008 0.0001 0.0003 0.0001			
7 43 44 45 46 47 48 49 50 51 53 53 45 55 56 57 58 58 68 61 62 63	COMPONENTS Methane Ethane Propane i-Butane n-Butane n-Butane i-Pentane 3-Mhexane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-Decane n-C11	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.00258 0.0055 0.0005 0.0001 0.0009 0.0047 0.0028 0.0002 0.0001 0.0000 0.0001 0.0000 0.0001	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0184 0.0184 0.0231 0.0046 0.0006	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.05624 0.05574 0.0057 0.0723 0.0723 0.0723 0.0723 0.0723 0.0723 0.02806 2.0.0230 2.0.02806 2.0.0230 0.00850 0.00082 0.0229 0.0.0049 0.0.0088	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0011 0.0015 0.0095 0.0057 0.0005 0.0071 0.0013 0.0001 0.0001 0.0005 0.005 0.005 0.005 0.005	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063 0.0004 0.0008 0.0004 0.0005 0.0005 0.0001	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.0002 0.0045 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001			
1 3 4 4 4 4 9 5	COMPONENTS Methane Ethane Propane i-Butane n-Butane i-Pentane a-Mhexane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-C11 n-C12	MOLAR FLOW (ibmole/hr) 0.4115 0.4119 0.3164 0.0461 0.1172 0.0258 0.00258 0.0055 0.0065 0.0065 0.0001 0.0009 0.0047 0.0028 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000	MOLE FRACTION 0.2932 0.2935 0.2255 0.0329 0.0835 0.0835 0.0184 0.0231 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0002 0.0022 0.0022 0.0022 0.0022 0.0004	MASS FLOW (lb/hr) 6.6023 12.3871 13.9544 2.6819 6.8126 1.8632 2.3374 0.6624 0.05574 0.0057 0.0057 0.0723 0.4717 0.2806 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0230 2.0.0046 0.0082 0.0029 0.00049 0.0008	MASS FRACTION 0.1336 0.2506 0.2823 0.0543 0.0377 0.0473 0.0114 0.0113 0.0011 0.0015 0.0095 0.0057 0.0005 0.0071 0.0013 0.0001 0.0001 0.0005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	LIQUID VOLUME FLOW (barrel/day) 1.5100 2.3847 1.8858 0.3268 0.7998 0.2046 0.2542 0.0558 0.0576 0.0004 0.0063 0.0463 0.0280 0.0018 0.0342 0.0063 0.0004 0.0008 0.00022 0.0005 0.0001 0.0001	LIQUID VOLUME FRACTION 0.1978 0.3124 0.2471 0.0428 0.1048 0.0268 0.0333 0.0073 0.0075 0.0001 0.0008 0.0061 0.0002 0.0045 0.0000 0.0001 0.0001 0.0001 0.0000			

MARKWEST HYDROCARBON, IN **Burlington, MA** USA

aspen

Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Unit Set: NewUser

Date/Time:

Wed Jun 27 16:00:53 2012

Fluid Package: **Basis-1**

Material Stream: Winter Flow to VRU @TPL4 ((Property Package: Peng-Robinson

Ť

8					- • • • •	peny Package: Pen	g-roomson
9 10			C	OMPOSITION			
11 12			Vapour Ph	ase (continued)		Phase Fra	nction 1.000
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	H2O	0.0149	0.0106	0 2682	0 0054	0.0184	0.0024
16	Nitrogen	0.0008	0,0006	0.0219	0 0004	0.0019	0.0002
17	CO2	0.0000	0.0000	0.0210	0.0004	0.0057	0.0002
	002	0.0010	0.0011	0.0001	0.0014	0.0000	0.0007
10	Tatat	1.4036	1 0000	40 4286	1,0000	7 6324	1 0000
19	Total	1.4035	1.0000 [45.4200	1.0000	1.0024	1.0000_
20			Liqu	lid Phase		Phase Fra	action 0.0000
22 23	COMPONENTS	MOLAR FLOW (Ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
24	Methane	0.0000	0.0017	0.0000	0.0003	0.0000	0.0006
25	Ethane	0.0000	0.0113	0.0000	0.0033	0.0000	0.0063
26	Propane	0.0000	0.0365	0.0000	0.0154	0.0000	0.0210
27	i-Butane	0.0000	0.0152	0.0000	0.0084	0.0000	0.0104
28	n-Butane	0.0000	0.0568	0.0000	0.0315	0.0000	0.0374
29	I-Pentane	0.0000	0.0352	0.0000	0.0242	0.0000	0.0270
30	n-Pentane	0.0000	0.0616	0.0000	0.0424	0.0000	0.0467
31	3-Mheyane	0.0000	0.1063	0.0000	0.1016	0.0000	0.1021
32	n.Hevene	0 0000	0.0462	0.000	0.0380	0.0000	0.0397
33	Ranzana	0.0000	0 0005	0.000	0.0004	0.0000	0.0003
24	Cyclobevane	0.0000	0.0076	0.0000	0.0061	0.0000	0.0054
25	22 Moontane	0.0000	0.0010	0.0000	0.0007	0,0000	0.0763
33	z Hontono	0.0000	0.0003	0.0000	0.0701	0.0000	0.0693
30	л-перале Тамата	0.0000	0.0710	0.0000	0.0000	0.0000	0.0030
31	2 Mihantana	0.0000	0.0009	0.0000	0.0001	0.0000	0.0040
30		0.0000	0.1500	0.0000	0.2070	0.0000	0.2007
39	n-Octane	0.0000	0.0522	0.0000	0.0042	0.0000	0.0000
40	E-Benzene	0.0000	0.0042	0.0000	0.0045	0.0000	0.0034
41	o-Xyiene	0.0000	0.0090	0.0000	0.0035	0.0000	0.0070
42	n-Nonane	0.0000	0.0555	0.0000	0.0079	0.0000	0.0034
43	n-Decane	0.0000	0.0349	0.0000	0.0474	0.0000	0.0999
44	n-C11	0.0000	0.0188	0.0000	0.0280	0.0000	0.0202
45	n-C12	0.0000	0.0953	0.0000	0.1546	0.0000	0.1430
46	H2O	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000
47	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
48	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
49	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
50	Total	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
51 52			Aque	ous Phase		Phase Fra	action 0.0000
53 54	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
55	Methane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
56	Fihana	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
57	Pronane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
58	i-Rutane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
50	n.Rutane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
60	i-Dentana	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
81	n-Pentene	0.0000	0.0000	0.000	0.0000	0.0000	0.0000
62	1.Mhavana	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
62	o-Norano	0.0000	0.0000	0.0000	0.0000	0 0000	0.0000
84	Renzene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	BUILDING		,				

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN Aspen HYSYS Version 7.1 (23.0.0.7119)

Page 7 of 23

* Specified by user.

Star P. C. Star

MARKWEST HYDROCARBON, IN Burlington, MA USA

Unit Set: NewUser

Date/Time: W

Case Name:

Wed Jun 27 18:00:53 2012

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

ű.

3

•

6 7 8	Materia	al Strea	m: Winter	Flov	w to VRU		lid Package: Bas operty Package: Per	is-1 ng-Robinson
9 10				С	OMPOSITION			
11 12			Aque	ous P	hase (continue	ed)	Phase Fr	action 0.0000
13 14	COMPONENTS	MOLAR FL	OW MOLE FRAC	ΓΙΟΝ	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	Cyclohexane	0.0	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
16	23-Mpentane	0.0	0000 0.0	0000	0.000	0.0000	0.0000	0.0000
17	n-Heptane	0.	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
18	Toluene	0.0	0000 0.0	0000	0.000	0.0000	0.0000	0.0000
19	2-Mheptane	0.0	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
20	n-Octane	0.0	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
21	E-Benzene	0.	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
22	o-Xylene	0.0	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
23	n-Nonane	0.		0000	0.000	0 0.0000	0.0000	0.0000
24	n-Decane	0.0			0.000	0.0000	0.0000	0.0000
25	n-C11	0.			0.000	0.0000	0.0000	0.0000
20		0.			0.000	0 1.0000	0.0000	1 0000
20	Nitrogen	0.			0.000	0 0000	0.0000	0.0000
29	CO2	0.0	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
30	Oxygen	0.	0000 0.0	0000	0.000	0 0.0000	0.0000	0.0000
31	Total	0.0	0000 1.0	0000	0.000	0 1.0000	0.0000	1.0000
32 33 34 35	Materia	al Strea	m: Summe	er Fl			dd Package: Bas operty Package: Per	sis-1 ng-Robinson
36	······		Overall		anour Phase	Liquid Phase	Aqueous Phase	
37	Vanour / Phase Erection		1 0000		1 0000	0.0000	0.0000	
39	Temperature:	(F)	94.09		94.09	94.09	94.09	· · · · · · · · · · · · · · · · · · ·
40	Pressure:	(osia)	14.10	1	14.10	14.10	14.10	
41	Molar Flow	(MMSCFD)	6.913e-004		6.913e-004	0.0000	0.0000	
42	Mass Flow	(ib/hr)	2.610		2.610	0.0000	0.0000	
43	Std Ideal Lig Vol Flow	(barrel/day)	0.3956		0.3956	0.0000	0.0000	
44	Molar Enthalpy	(Btu/Ibmole)	-4.479e+004		-4.479e+004	-1.280e+005	-1.227e+005	
45	Molar Entropy (E	Btu/Ibmole-F)	46.04		46.04	56.77	13.41	
46	Heat Flow	(Btu/hr)	-3400		-3400_	0.0000	0.0000	
47	Liq Vol Flow @Std Cond	(barrel/day)	0.4228	<u> </u>	0.4228	0.0000	0.0000	
48 49				F	PROPERTIES			
50			Overall	V	apour Phase	Liquid Phase	Aqueous Phase	
51	Molecular Weight		34.39	1	34.39	143.6	18.02	
52	Molar Density	(ibmole/ft3)	2.394e-003		2.394e-003	0.3142	3.466	
53	Mass Density	(lb/ft3)	8.232e-002		8.232e-002	45.13	62.44	
54	Act. Volume Flow	(barrel/day)	135.5		135.5	0.0000	0.0000	
55	Mass Enthalpy	(Btu/lb)	-1303		-1303	-891.1	-6813	
56	Mass Entropy	(Btu/lb-F)	1.339		1.339	0.3952	0.7443	
57	Heat Capacity (E	Stu/Ibmole-F)	15.02		15.02	72.53	18.50	.
58	Mass Heat Capacity	(Btu/ID-F)	0.4300 6 704a+005		6 7040+005	2 7530+006	1.030	
28	Lower Heating Value		1 9496+003		1 949e+004	1.916e+004	5.678e-005	
60 61	Phase Fraction (Vol. Res		1.04001004		1.000			
62	Phase Fraction Mass Ra	sisì	2.1228-314		1.000	0.0000	0.0000	
63	Partial Pressure of CO2	(DSia)	2.487e-002	1		••••	_	
64	Cost Based on Flow	(Cost/s)	0.000		0.0000	0.0000	0.0000	
65	Hyprotech Ltd.		Aspen	HYSY	S Version 7.1 (2	3.0.0.7119)		Page 8 of 23

1				Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc					
3	aspen	MARKWEST HYL Burlington, MA	DROCARBON, IN	Unit Set: Ne	wUser				
4	depoint	USA		Date/Time: We	d Jun 27 16:00:53 20	12			
6 7 8	Material	Stream:	Summer	Flow to VR	J @TPL3 Fil	uid Package: Bas operty Package: Per	iis-1 ng-Robinson		
9				PROPERTIES					
11	· · ··		Overall	Vapour Phase	Liquid Phase	Aqueous Phase	····		
12	Act. Gas Flow	(ACFM)	0.5285	0.5285					
13	Avg. Liq. Density (I	bmole/ft3)	0.8203	0.8203	0.3186	3.458			
14	Specific Heat (Btu	/lbmole-F)	15.02	15.02	72.53	18.56			
15	Std. Gas Flow (M	MMSCFD)	6.914e-004	6.914e-004	0.0000	0.0000			
16	Std. Ideal Liq. Mass Density	/ (lb/ft3)	28.21	28.21	45.76	62.30			
17	Act. Liq. Flow	(USGPM)	0.0000			0.0000			
18	Z Factor			0.9911	7.551e-003	6.846e-004			
19	Watson K		15.84	15.84	12.67	8.521			
20	User Property								
21	Partial Pressure of H2S	(psia)	0.0000	•••					
22	Cp/(Cp - R)	W 5107. [1.152	1.152	1.028	1.120			
23	Cp/Cv		1.158	1.158	1.028	1.153			
24	Heat of Vap. (B	tu/ibmole)	1.239e+004						
25	Kinematic Viscosity	(cSt)	7.395	7.395	1.113	0.7257			
26	Lio. Mass Density (Std. Con	id) (lb/ft3)	26.39	26.39	46.05	63.33			
27	Lin, Vol. Flow (Std. Cond) (b	arrel/day)	0.4228	0.4228	0.0000	0.0000			
28	Liquid Fraction		0.0000	0.0000	1.000	1.000			
29	Molar Volume (f	t3/lbmole)	417.7	417.7	3,183	0.2885			
30	Mass Heat of Van	(Btu/ib)	360.2	••••					
31	Phase Fraction (Molar Basis	1	1,0000	1.0000	0.0000	0.0000	•		
32	Surface Tension	(dvne/cm)			21.40	70.45	•••• •		
33	Thermal Conductivity (F	Stu/hr-ft-F)	1 330e-002	1.330e-002	7,294e-002	0.3608			
34	Viscosity	(cP)	9 751e-003	9.751e-003	0.8045	0.7259			
36	Cy (Semi-Ideal) (Bty	/ihmole-F)	13.03	13.03	70.54	16.58			
14	Mass Cy (Semi-Ideal)	/Bhu/b_F)	0 3791	0.3791	0 4911	0 9202			
27	Cv (Centerdeal)	(bmole-E)	12 97	12 97	70 54	16 10			
20	Mass Cu	(Bhulb-E)	0 3771	0 3771	0.4911	0.8939			
30	Cy (Ent Method) (Btu	(bmole-E)	0.0171			15 69			
40	Mass Cy (Ent. Method)	(Btu/b-E)				0.8707			
H	Co/Cu (Ent. Nothod)					1 183			
	Doid VP at 37.8 C	(neia)	BER A	666.4	6.937				
	Taxo VP at 37.8 C	(psia)	1165	1165	14.82	10.48	······		
43	Lie Vol Elour Sum/Sid R	(psid)	0 4228	0 4228	0 0000	0 0000			
	Liq. Vol. Flow - Sum(Sid. 44	Sauproay)	0.9220	0.4220	-1 129	-0.8612			
46	VISCOSILY INDEX					0.0012	······		
47				COMPOSITION					
48 49			C	verall Phase		Vapour F	raction 1.0000		
50 51	COMPONENTS	MOLAR FLOW (Ibmole/hr)	MOLE FRACTIO	N MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
52	Methane	0.0236	0.3114	4 0.3792	0.1453	0.0867	0.2192		
52	Fibane	0.0194	0.255	9 0.5842	0.2238	0.1125	0.2843		
54	Propage	0.0150	0.197	2 0.6601	0.2529	0.0892	0.2255		
55	i-Butane	0.0023	0.030	9 0.1361	0.0522	0.0166	0.0419		
56	n-Butane	0.0061	0.080	3 0.3542	0.1357	0.0416	0.1051		

Licensed to: MARKWEST HYDROCARBON, IN

0.0014

0.0018

0.0004

0.0004

0.0000

0.0001

0.0003

0.0002

0.0189

0.0241

0.0049

0.0052

0.0001

0.0007

0.0041

0.0026

0.1035

0.1321

0.0375

0.0340

0.0003

0.0045

0.0310

0.0195

Aspen HYSYS Version 7.1 (23.0.0.7119)

0.0396

0.0506

0.0144

0.0130

0.0001

0.0017

0.0119

0.0075

0.0114

0.0144

0.0037

0.0035

0.0000

0.0004

0.0030

0.0019

57

63

64

65

i-Pentane

n-Pentane

3-Mhexane

n-Hexane

Benzene

Cyclohexane

23-Mpentane

Hyprotech Ltd.

n-Heptane

Page 9 of 23 * Specified by user.

0.0287

0.0363

0.0094

0.0089

0.0001

0.0010

0.0077

1				Case Name: Smi	th HYSYS 130 MMSC	FD 6-29-2012.hsc	
3	aspen Materia	Burlington, MA	DRUCARBON, IN	Unit Set: New	/User		
4	•	054		Date/Time: Wed	d Jun 27 16:00:53 201	2 2	
6 7 8	Materia	I Stream:	Summer I	Flow to VRU	J @TPL3 ^{Flui} Pro	d Package: Basi perty Package: Peng	s-1 y-Robinson
9 10				COMPOSITION			
11 12			Overall	Phase (continued)		Vapour Fr	action 1.0000
13 14	COMPONENTS	MOLAR FLOW (Ibmole/hr)	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	Toluene	0.0000	0.0002	0.0016	0.0006	0.0001	0.0003
16	2-Mheptane	0.0003	0.0034	0.0296	0.0113	0.0029	0.0073
17	n-Octane	0.0001	0.0007	0.0063	0.0024	0.0008	0.0015
18	E-Benzene	0.0000	0.0001	0.0005	0.0002	0.0000	0.0001
19	o-Xylene	0.0000	0.0001	0.0009	0.0003	0.0001	0.0002
20	n-Nonane	0.0000	0.0004	0.0042	0.0016	0.0004	0.0010
21	n-Decane	0.0000	0.0002	0.0021	0.0008	0.0002	0.0005
22	n-C11	0.0000	0.0001	0.0010	0.0004	0.0001	0.0002
23	n-C12	0.0000	0.0003	0.0041	0.0016	0.0004	0.0009
24	H2O	0.0042	0.0556	0.0761	0.0291	0.0052	0.0132
25	Nitrogen	0.0001	0.0009	0.0019	0.0007	0.0002	0.0004
26	CO2	0.0001	0.0018	0.0059	0.0023	0.0005	0.0012
27	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
28	Total	0.0759	1.0000	2.6103	1.0000	0.3956	1.0000
29 30			Va	apour Phase		Phase Fra	ction 1.000
31 32	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
33	Methane	0.0236	0.3114	0.3792	0.1453	0.0867	0.2192
34	Ethane	0.0194	0.2559	0.5842	0.2238	0.1125	0.2843
35	Propane	0.0150	0.1972	0.6601	0.2529	0.0892	0.2255
36	i-Butane	0.0023	0.0309	0.1361	0.0522	0.0166	0.0419
37	n-Butane	0.0061	0.0803	0.3542	0.1357	0.0416	0.1051
38	i-Pentane	0.0014	0.0189	0.1035	0.0396	0.0114	0.0287
39	n-Pentane	0.0018	0.0241	0.1321	0.0506	0.0144	0.0363
40	3-Mhexane	0.0004	0.0049	0.0375	0.0144	0.0037	0.0094
41	n-Hexane	0.0004	0.0052	0.0340	0.0130	0.0035	0.0089
42	Benzene	0.0000	0.0001	0.0003	0.0001	0.0000	0.0001
43	Cyclohexane	0.0001	0.0007	0.0045	0.0017	0.0004	0.0010
44	23-Mpentane	0.0003	0.0041	0.0310	0.0119	0.0030	0.0077
45	n-Heptane	0.0002	0.0026	0.0195	0.0075	0.0019	0.0049
46	Toluene	0.0000	0.0002	0.0016	0.0006	0.0001	0.0003
47	2-Mheptane	0.0003	0.0034	0.0296	0.0113	0.0029	0.0073
48	n-Octane	0.0001	0.0007	0.0063	0.0024	0.0006	0.0015
49	E-Benzene	0.0000	0.0001	0.0005	0.0002	0.0000	0.0001
50	o-Xylene	0.0000	0.0001	0.0009	0.0003	0.0001	0.0002
51	n-Nonane	0.0000	0.0004	0.0042	0.0016	0.0004	0.0010
52	n-Decane	0.0000	0.0002	0.0021	0.0008	0.0002	0.0005
53	n-C11	0.0000	0.0001	0.0010	0.0004	0.0001	0.0002
54	n-C12	0.0000	0.0003	0.0041	0.0016	0.0004	0.0009
55	HZO	0.0042	0.0556	0.0761	0.0291	0.0052	0.0132
56		0.0001	2000.0	0.0019	0.0007	0.0002	0.0004
	CD2	0.0001	0.0018	0.0059	0.0023	0.0000	0.0012
57	0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0000	0.0000	0.0000	0.0000	1.0000
57 58	Oxygen	0.0000	4 0000	0.0400	1 10000	1 11 10 10 10 10	
57 58 59	Oxygen Total	0.0759	1.0000	2.6103	1.0000	0.3956	1.0000
57 58 59 60 61	Oxygen Total	0.0759	1.0000	iquid Phase	1.0000	Phase Fra	iction 0.0000
57 58 59 60 61 62 63	Oxygen Total COMPONENTS	0.0759 MOLAR FLOW (Ibmole/hr)	1.0000 L MOLE FRACTION	2.6103 iquid Phase N MASS FLOW (lb/hr)	MASS FRACTION	Phase Fra LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION

Licensed to: MARKWEST HYDROCARBON, IN

* Specified by user.

2

3

4

5 6

7

8 9

MARKWEST HYDROCARBON, IN **Burlington, MA** USA

Unit Set:

NewUser

Date/Time:

Wed Jun 27 16:00:53 2012

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Fluid Package: Material Stream: Summer Flow to VRU @TPL3

Property Package: Peng-Robinson

Basis-1

COMPOSITION

Case Name:

10 11 Liquid Phase (continued) **Phase Fraction** 0.0000 12 LIQUID VOLUME 13 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW LIQUID VOLUME MASS FRACTION 14 (ibmcle/hr) (lb/hr) FLOW (barrel/day) FRACTION 15 Ethane 0.0000 0.0061 0.0000 0.0013 0.0000 0.0026 16 0.0000 Propane 0.0163 0.0000 0.0050 0.0000 0.0072 17 i-Butane 0.0000 0.0064 0.0000 0.0026 0.0000 0.0034 18 n-Butane 0.0000 0.0229 0.0000 0.0093 0.0000 0.0117 19 i-Pentane 0.0000 0.0135 0.0000 0.0068 0.0000 0.0080 20 0.0000 0.0226 0.0000 0.0114 0.0000 0.0132 n-Pentane 21 3-Mhexane 0.0000 0.0347 0.0000 0.0242 0.0000 0.0257 22 n-Hexane 0.0000 0.0155 0.0000 0.0093 0.0000 0.0103 23 0.0002 0.0001 0.0000 0.0001 Benzene 0.0000 0.0000 0.0014 24 0.0000 0.0025 0.0000 0.0015 0.0000 Cyclohexane 25 0.0000 0.0263 0.0000 0.0184 0.0000 0.0193 23-Mpentane 26 0.0164 0.0175 0.0000 0.0235 0.0000 0.0000 n-Heptane 0.0012 27 0.0022 0.0000 0.0014 0.0000 Toluene 0.0000 28 0.0000 0.0690 0.0000 0.0549 0.0000 0.0574 2-Mheptane 29 0.0000 0.0202 0.0000 0.0161 0.0000 0.0167 n-Octane 0.0012 0.0000 0.0010 30 0.0000 0.0016 0.0000 E-Benzene 31 0.0000 0.0040 0.0000 0.0030 0.0000 0.0025 o-Xylene 32 0.0000 0.0350 0.0000 0.0313 0.0000 0.0318 n-Nonane 0.0000 0.0463 33 0.0000 0.0467 0.0000 0.0463 n-Decane 0.0633 0.0000 34 n-C11 0.0000 0.0590 0.0000 0.0642 0.6590 35 n-C12 0.0000 0.5695 0.0000 0.6754 0.0000 0.0007 0.0001 0.0000 0.0001 36 H2O 0.0000 0.0000 0.0000 37 0.0000 0.0000 0.0000 0.0000 0.0000 Nitrogen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 38 CO2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 39 Oxygen 0.0000 0.0000 1.0000 1.0000 40 0.0000 1.0000 Total 41 0.0000 **Aqueous Phase Phase Fraction** 42 MOLAR FLOW LIQUID VOLUME LIQUID VOLUME 43 MASS FLOW MASS FRACTION **MOLE FRACTION** COMPONENTS FRACTION (lb/hr) FLOW (barrel/day) 44 (lbmcle/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 45 Methane 0.0000 0.0000 0.0000 46 0.0000 0.0000 0.0000 0.0000 Ethane 0.0000 47 0.0000 0.0000 0.0000 0.0000 0.0000 Propane 0.0000 48 i-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 49 n-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50 0.0000 0.0000 0.0000 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 51 0.0000 n-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 52 3-Mhexane 0.0000 0.0000 0.0000 0.0000 0.0000 53 0.0000 0.0000 n-Hexane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 54 Benzene 0.0000 0.0000 0.0000 0.0000 0.0000 55 Cyclohexane 0.0000 58 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 23-Mpentane 57 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Heptane 0.0000 0.0000 0.0000 0.0000 0.0000 58 0.0000 Toluene 0.0000 0.0000 0.0000 0.0000 0.0000 59 2-Mheptane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 60 n-Octane 0.0000 0.0000 0.0000 0.0000 0.0000 61 0.0000 0.0000 E-Benzene 0.0000 0.0000 0.0000 0.0000 62 0.0000 0.0000 o-Xylene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 63 n-Nonane 0.0000

0.0000

0.0000

0.0000

Aspen HYSYS Version 7.1 (23.0.0.7119)

0.0000

÷.

Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

64

65

n-Decane

Page 11 of 23

^{&#}x27; Specified by user.

1				Case Name: S	mith HYSYS 130 MMS	CFD 6-29-2012.hsc	
3	aspen	MARKWEST HY Burlington, MA	(DROCARBON, IN	Unit Set: N	ewUser		
4	uspen	USA		Date/Time: W	/ed Jun 27 16:00:53 20	12	
6 7 8	Material	Stream:	Summer	Flow to VR		uid Package: Bas operty Package: Per	iis-1 ng-Robinson
9 10				COMPOSITION			
11			Aqueou	s Phase (continue	d)	Phase Fr	action 0.0000
12 13 14	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTIO	N MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrei/day)	LIQUID VOLUME FRACTION
15	n-C11	0.0000	0.000	0 0.0000	0.0000	0.0000	0.0000
16	n-C12	0.0000	1.000	0.0000		0.0000	1 0000
18	Nitrogen	0.0000	0.000	0 0.0000	0.0000	0.0000	0.0000
19	CO2	0.0000	0.000	0 0.0000	0.0000	0.0000	0.0000
20	Oxygen	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
21	Total	0.0000	1.000	0.0000	1.0000	0.0000	1.0000
22				an Artista (alta alta alta)	Flu	uld Package: Bas	ls-1
23	Material	Stream:	Spring/Fa	all Liquid Fl	ow to Stc	anorty Backagay Bar	a Babincan
24					Fi	openy Fackage: Fei	19-rtobinson
25				CONDITIONS			
26			0	Name Diagonal La	Linut Dhana	Anuania Dhasa	
27	Manager I Obasa Franklan		Overall			Aqueous Phase	
28	Tomperature:	(E)	78.97	78.97	78.97	78.97	
30	Pressure:	(osia)	14.10	14.10	14.10	14.10	
31	Molar Flow (MMSCFD)	0.5795	2.012e-003	2.621e-002	0.5513	
32	Mass Flow	(lb/hr)	1482	7.708	384.0	1090	
33	Std Ideal Lig Vol Flow (I	parrel/day)	112.3	1.176	36.29	74.82	
34	Molar Enthalpy (B	Itu/Ibmole)	-1.226e+005	-4.366e+004	-1.210e+005	-1.230e+005	
35	Molar Entropy (Btu	/lbmole-F)	14.70	45.53	50.29	12.90	
36	Heat Flow	(Btu/hr)	-7.804e+006	-9648	-3.482e+005	-7.446e+006	
37	Liq Vol Flow @Std Cond (I	barrel/day)	106.1 *	1.265	36.01	73.61	
38 39				PROPERTIES			
40			Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
41	Molecular Weight		23.29	34.88	133.4	18.02	
42	Molar Density (lbmole/ft3)	0.5506	2.464e-003	0.3377	3.488	
43	Mass Density	(lb/ft3)	12.82	8.593e-002	45.06	62.83	
44	Act. Volume Flow (I	barrel/day)	494.0	383.4	36.43	74.18	
45	Mass Enthalpy	(Blu/Ib)	-5265	-1252	-900.8	-0020	
46	Mass Entropy		20.71	1.303	0.3709 RR 40	18.56	
47	Mass Heat Canacity (Diu	(Btu/b-E)	0.8891	0 4284	0 4976	1.030	
49	Lower Heating Value (F	(Ulario))	1.182e+005	6.884e+005	2.559e+006	6.118e-004	
50	Mass Lower Heating Value	(Btu/ib)	5073	1.974e+004	1.918e+004	3.396e-005	
51	Phase Fraction [Vol. Basis]		1.047e-002	1.047e-002	0.3232	0.6663	
52	Phase Fraction (Mass Basis	5]	5.200e-003	5.200e-003	0.2591	0.7357	
53	Partial Pressure of CO2	(psia)	1.971e-002				
54	Cost Based on Flow	(Cost/s)	0.0000	0.0000	0.0000	0.0000	
55	Act. Gas Flow	(ACFM)	<mark></mark> .	1.495			•
56	Avg. Liq. Density (Ibmole/ft3)	2.422	0.8035	0.3390	3.458	
57	Specific Heat (Blu		20.71	2 0120 002	2 6210 002	18.00	
58	Std. Ideal Liz Mass Dansit		C816.U	2.0130-003	2.02 18-002 AF 22	62 30	
60	Act Lig Flow		3 228	20.00	1.063	2.164	
81	7 Factor		V.46V	0.9901	7.223e-003	6.994e-004	
62	Watson K		12.68	15.86	12.65	8.515	
63	User Property	· · · · · · · · · · · · · · · · · · ·			••••		
ĀA	Partial Pressure of H2S	(psia)	0.0000				

Aspen HYSYS Version 7.1 (23.0.0.7119)

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN ga të të pasë je t

MARKWEST HYDROCARBON, IN Burlington, MA USA

Unit Set: NewUser

Date/Time:

Case Name:

Wed Jun 27 16:00:53 2012

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Material Stream: Spring/Fall Liquid Flow to Sto

Fluid Package: **Basis-1** • . •

ĥ					•		19-1 100410011
9 10				PROPERTIES			
11			Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
12	Cp/(Cp - R)		1.106	1.153	1.031	1.120	
13	Cp/Cv		1.000	1.160	1.031	1.148	
14	Heat of Vap.	(Btu/ibmole)	2.486e+004				
15	Kinematic Viscosity	(cSt)		6.892	1.064	0.8630	
16	Liq. Mass Density (Std. C	Cond) (Ib/ft3)	59.73	26.04	45.58	63.33	
17	Liq. Vol. Flow (Std. Cond)) (barrel/day)	106.1	1.265	36.01	73.61	
18	Liquid Fraction	·····	0.9965	0.0000	1.000	1.000	
19	Molar Volume	(ft3/ibmole)	1.816	405.9	2.961	0.2867	
20	Mass Heat of Vap.	(Btu/ib)	1067				
21	Phase Fraction [Molar Ba	isis]	0.0035	0.0035	0.0452	0.9513	
22	Surface Tension	(dyne/cm)			21.34	71.91	
23	Thermal Conductivity	(Btu/hr-ft-F)		1.2736-002	7.252e-002	0.3540	
24	Viscosity	(cP)		9.486e-003	0.7682	0.8686	
25	Cv (Semi-Ideal) (E	Stu/Ibmole-F)	18.73	12.96	64.41	16.57	
26	Mass Cv (Semi-Ideal)	(Btu/lb-F)	0.8039	0.3714	0.4828	0.9200	
27	(E	Stu/ibmole-F)	20.70	12.88	64.41	16.17	
28	Mass Cv	(Btu/lb-F)	0.8888	0.3694	0.4828	0.8976	
29	Cv (Ent. Method) (B	Stu/Ibmole-F)				15.80	
30	Mass Cv (Ent. Method)	(Btu/lb-F)		***		0.8772	
31	Cp/Cv (Ent. Method)				••••	1.1/4	
32	Reid VP at 37.8 C	(psia)	26.83	651.3	8.854		
33	True VP at 37.8 C	(psia)	100.6	1133	17.10	5./15	
34	Liq. Vol. Flow - Sum(Std.	(doad)el/day)	110.9	1.265	30.01	(3.01	
35	Viscosity Index				-1.193	-0.6629	
36				COMPOSITION	l		
37	<u> </u>						
39				Overall Phase		Vapour F	raction 0.0035
40 41	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACT	ION MASS FLOW	MASS FRACTION	I LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
42	Methane	0.0723	0.0	011 1.16	0.0008	0.2654	0.0024
43	Ethane	0.0804	0.0	013 2.41	70 0.0016	0.4653	0.0041
44	Propane	0.1055	0.0	017 4.65	43 0.0031	0.6290	0.0056
45	i-Butane	0.0310	0.0	1.80	0.0012	0.2196	0.0020
46	n-Butane	0.1051	0.0	017 6.10	0.0041	0.7170	0.0064
47	i-Pentane	0.0563	0.0	4.06	53 0.0027	0.4465	0.0040
48	n-Pentane	0.0938	0.0	015 6.77	02 0.0046	0.7361	0.0066
49	3-Mhexane	0.1457	0.Q	14.60	0.0099	1.4487	0.0129
50	n-Hexane	0.0640	0.0	010 5.51	19 0.0037	0.5695	0.0051
51	Benzene	0.0007	0.0	0.05	43 0.0000	0.0042	0.0000
52	Cyclohexane	0.0104	0.0	0.87	0.0006	0.0767	0.0007
53	23-Mpentane	0.1101	0.0	11.03	0.0074	1.0823	0.0096
54	n-Heptane	0.0995	0.0	9.96	0.0067	0.9935	0.0088
55	Toluene	0.0094			0.0006	0.0683	0.0006
56	2-Mheptane	0.2964	0.0	33.85	0.0228	3,3082	0.0295
67	n-Octane	0.0877	0.0		0.0068	0.9/21	0.0087
58	E-Benzene	0.0070	0.0		0.0003	0.0584	0.0005
59	o-Xylene	0.0175	0.0			U.1441 4 0240	0.0013
60	n-Nonane	0.1502		19.20		2 4005	0.0103
61	n-Decane	0.1812		1028 27.70	30 0.0174	2.4080	0.0215
62	n-G11	U.1/50		1187 202 27.30	764 0.1368	18 4847	D 1646
63		E0 5209	0.0	0514 1000 63	0,1300	74 8290	0.6664
104	Huprotoch I Id	1 00.0380	1 U.a	HYSYS Version 7 1 /	23.0.0.7119		Page 13 of 23
		-					

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

Page 13 of 23 * Specified by user.

1

Case Name:

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

H				Case Name: Smi	th HYSYS 130 MMSC	FD 6-29-2012.hsc	
3	aspen	Burlington, MA	COCARBON, IN	Unit Set: New	Иser		
4	uopon	USA		Date/Time: Wee	d Jun 27 16:00:53 201	2	
6 7 8	Materia	al Stream: S	Spring/Fal	l Liquid Flo	ow to Stc Flui Pro	d Package: Bas perty Package: Pen	is-1 g-Robinson
9 10			(COMPOSITION			
11			Overall P	hase (continued)		Vapour Fr	action 0.0035
12	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION		LIQUID VOLUME
14		(ibmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION
15	Nitrogen	0.0002	0.0000	0.0047	0.0000	0.0004	0.0000
16	CO2	0.0004	0.0000	0.0178	0.0000	0.0015	0.0000
17	Oxygen	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
18	Total	63.6299	1.0000	1482.1980	1.0000	112.2836	1.0000
19 20			Vaj	pour Phase	Phase Fra	action 3.473e-003	
21	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
23	Methane	0.0680	0.3076	1.0903	0.1415	0.2494	0.2121
24	Ethane	0.0593	0.2682	1.7820	0.2312	0.3431	0.2918
25	Propane	0.0459	0.2076	2.0230	0.2625	0.2734	0.2326
26	i-Butane	0.0071	0.0319	0.4101	0.0532	0.0500	0.0425
27	n-Butane	0.0182	0.0826	1.0603	0.1376	0.1245	0.1059
28	i-Pentane	0.0042	0.0191	0.3043	0.0395	0.0334	0.0284
29	n-Pentane	0.0054	0.0243	0.3870	0.0502	0.0421	0.0358
30	3-Mhexane	0.0011	0.0049	0.1074	0.0139	0.0107	0.0091
31	n-Hexane	0.0011	0.0052	0.0982	0.0127	0.0101	0.0086
32	Benzene	0.0000	0.0001	0.0010	0.0001	0.0001	0.0001
33	Cyclohexane	0.0002	0.0007	0.0129	0.0017	0.0011	0.0010
34	23-Mpentane	0.0009	0.0040	0.0890	0.0115	0.0087	0.0074
35	n-Heptane	0.0006	0.0025	0.0558	0.0072	0.0056	0.0047
36	Toluene	0.0001	0.0002	0.0046	0.0006	0.0004	0.0003
37	2-Mheptane	0.0007	0.0033	0.0835	0.0108	0.0082	0.0069
38	n-Octane	0.0002	0.0007	0.0175	0.0023	0.0017	0.0014
39	E-Benzene	0.0000	0.0001	0.0013	0.0002	0.0001	0.0001
40	o-Xylene	0.0000	0.0001	0.0025	0.0003	0.0002	0.0002
41	n-Nonane	0.0001	0.0004	0.0110	0.0014	0.0010	0.0009
42	n-Decane	0.0000	0.0002	0.0049	0.0006	0.0005	0.0004
43	n-C11	0.0000	0.0000	0.0017	0.0002	0.0002	0.0001
44	n-C12	0.0000	0.0001	0.0047	0.0006	0.0004	0.0004
45	H2O	0.0076	0.0342	0.1363	0.0177	0.0094	0.0080
46	Nitrogen	0.0002	0.0007	0.0046	0.0006	0.0004	0.0003
47	CO2	0.0003	0.0014	0.0136	0.0018	0.0011	0.0010
48	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
49	Total	0.2210	1.0000	7.7076	1.0000	1.1755	1.0000
50 51			Lie	quid Phase		Phase Fr	action 4.523e-002
52 53	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
54	Methane	0.0044	0.0015	0.0702	0.0002	0.0160	0.0004
55	Ethane	0.0211	0.0073	0.6350	0.0017	0.1222	0.0034
56	Propane	0.0597	0.0207	2.6312	0.0069	0.3556	0.0098
57	i-Butane	0.0240	0.0083	1.3926	0.0036	0.1697	0.0047
58	n-Butane	0.0868	0.0302	5.0469	0.0131	0.5925	0.0163
59	i-Pentane	0.0521	0.0181	3.7611	0.0098	0.4131	0.0114
60	n-Pentane	0.0885	0.0307	6.3831	0.0166	0.6941	0.0191
61	3-Mhexane	0.1447	0.0503	14.4952	0.0377	1.4380	0.0396

Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

61

62

63

64

65

3-Mhexane

n-Hexane

Benzene

Cyclohexane

0.1447

0.0628

0.0007

0.0102

0.0503

0.0218

0.0002

0.0036

14.4952

5.4138

0.0532

0.8623

Aspen HYSYS Version 7.1 (23.0.0.7119)

Page 14 of 23 * Specified by user.

0.5594

0.0041

0.0755

da Afr

0.0141

0.0001

0.0022

0.0154

0.0001

1				Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc							
3	aspen	Burlington, MA		Unit Set: New	/User						
4		USA		Date/Time: Wee	Jun 27 16:00:53 201	2					
6 7 8	Materia	al Stream:	Spring/Fa	ll Liquid Flo	w to Stc Pro	id Package: Basi perty Package: Pen	is-1 g-Robinson				
9 10				COMPOSITION							
11	· · · · · · · · · · · · · · · · · · ·		Liquid F	hase (continued) Phase Fraction 4.523e-00							
13 14	COMPONENTS	MOLAR FLOW (Ibmcle/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME LIQUID VOLUM FLOW (barrel/day) FRACTION					
15 16	23-Mpentane n-Heptane	0.1092 0.0989 0.0094	0.0379 0.0344 0.0033	10.9445 9.9096 0.8633	0.0285 0.0258 0.0022	1.0736 0.9880 0.0679	0.0296 0.0272 0.0019				
18 19	2-Mheptane n-Octane	0.2957 0.0875	0.1027	33.7762 9.9964	0.0880 0.0260	3.3001 0.9704	0.0909 0.0267				
20 21 22	E-Benzene o-Xylene n-Nonane	0.0070 0.0175 0.1501	0.0024 0.0061 0.0522	0.7404 1.8558 19.2553	0.0019 0.0048 0.0501	0.0583 0.1439 1.8306	0.0016 0.0040 0.0504				
23 24	n-Decane n-C11	0.1812 0.1750	0.0629 0.0608	25.7787 27.3593	0.0671 0.0712	2.4090 2.5219	0.0664 0.0695				
25 26 27	n-C12 H2O Nitrogen	1.1804 0.0014 0.0000	0.4136 0.0005 0.0000	202.7717 0.0256 0.0001	0.5280 0.0001 0.0000	18.4843 0.0018 0.0000	0.5093 0.0000 0.0000				
28 29	CO2 Oxygen	0.0001	0.0000 0.0000	0.0025	0.0000 0.0000	0.0002 0.0000	0.0000				
30 31		2.8783	<u>1.0000</u> Aa	ueous Phase	1.0000	Phase Fra	action 0.9513				
32 33			•								
34	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION				
34 35	COMPONENTS	MOLAR FLOW (ibmole/hr) 0.0000	MOLE FRACTION	MASS FLOW (lb/hr) 0.0000	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day) 0.0000	LIQUID VOLUME FRACTION 0.0000				
34 35 36 37 38	COMPONENTS Methane Ethane Propane I-Butane	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0000 0.0000 0.0000 0.0000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000				
34 35 36 37 38 39 40	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000				
34 35 36 37 38 39 40 41 42 43	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane 3-Mhexane n-Hexane	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				
3 34 35 38 37 38 39 40 41 42 43 44 45 1	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				
334 35 36 37 38 39 40 41 42 43 44 45 46 47 48	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				
3 3 3 3 3 3 3 9 4 4 4 4 4 4 4 4 4 4 4 9 5 1	COMPONENTS Methane Ethane Propane I-Butane n-Butane n-Pentane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E Benzene	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	LIQUID VOLUME FRACTION 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				
3 3 3 3 3 3 3 4 1 4 4 4 4 4 4 4 4 9 5 5 2 3	COMPONENTS Methane Ethane Propane i-Butane n-Butane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane	MOLAR FLOW (ibmole/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MOLE FRACTION 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	MASS FLOW (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	LIQUID VOLUME FRACTION 0.0000				
3 3 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 45	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane n-Hexane Benzene Cyctohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-C11 p-C12	MOLAR FLOW (ibmole/hr) 0.0000	MOLE FRACTION 0.0000 0.	MASS FLOW (lb/hr) 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.0000				
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 8 4 5 5 5 5 5 5 5 5	COMPONENTS Methane Ethane Propane I-Butane n-Butane I-Pentane 3-Mhexane 3-Mhexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Octane E-Benzene o-Xylene n-Nonane n-Decane n-Ct1 n-Ct2 H2O Nitrogen	MOLAR FLOW (ibmole/hr) 0.0000	MOLE FRACTION 0.0000 0.	MASS FLOW (lb/hr) 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000000	LIQUID VOLUME FRACTION 0.0000				
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 8 8 3 5 5 5 5 5 5 5 5 5 8 5 8 5 8 5 8 5	COMPONENTS Methane Ethane Propane i-Butane n-Butane n-Pentane 3-Mhexane n-Hexane Benzene Cyclohexane 23-Mpentane n-Heptane Toluene 2-Mheptane n-Ctane E-Benzene o-Xylene n-Doctane E-Benzene o-Xylene n-Doctane n-Decane n-Ct11 n-Ct2 H2O Nitrogen CO2 Oxygen Total	MOLAR FLOW (ibmole/hr) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	MOLE FRACTION 0.0000 0.	MASS FLOW (lb/hr) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	MASS FRACTION 0.0000 0.000	LIQUID VOLUME FLOW (barrel/day) 0.0000 0.00	LIQUID VOLUME FRACTION 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000				

Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

64

65

-										
1			Case Name:	Smlih HYSYS 130 MI	MSCFD 6-29-2012.hsc					
2	ARKWE aspen Burlington	ST HYDROCARBON, IN , MA	Unit Set:	NewUser						
4	USA		Date/Time:	Wed Jun 27 16:00:53	2012					
6			Fluid Package: Basis-1							
7 8	Material Strea	m: Winter Li	quids To S	Storage @	Property Package: F	eng-Robinson				
9			CONDITIONS							
10		Overall	Vanour Phono	Liquid Bhaso	Anucous Phono					
12	Vanour / Phase Fraction	0.0164	0.0164	0 1743	Aqueous Phase 0 8093					
13	Temperature: (F)	46.05	46.05	46.05	46.05					
14	Pressure: (psia)	14.10	14.10	14.10	14.10					
15	Molar Flow (MMSCFD)	0.7790	1.278e-002	0.1358	0.6304					
16	Mass Flow (lb/hr)	2860	49.43	1564	1247					
17	Std Ideal Liq Vol Flow (barrel/day)	247.5	7.632	154.3	85.56	ļ				
18	Molar Enthalpy (Btu/Ibmole)	-1.182e+005	-4.248e+004	-1.003e+005	-1.236e+005					
19	Molar Entropy (Btu/Ibmole-F)	16.08	44.42	33.62	11.72					
20	Heat Flow (Btu/hr)	-1.011e+007	-5.863e+004	-1.495e+006	-8.558e+006					
21	Liq Vol Flow @Std Cond (barrel/day)	228.8 *	8.263	152,7	84.18	_L				
22 23			PROPERTIES							
24		Overall	Vapour Phase	Liquid Phase	Aqueous Phase					
25	Molecular Weight	33.44	35.22	104.9	18.02					
26	Molar Density (Ibmole/ft3)	0.1453	2.630e-003	0.4213	3.535					
27	Mass Density (lb/ft3)	4.859	9.261e-002	44.18	63.68					
28	Act. Volume Flow (barrel/day)	2516	2281	151.3	83.70					
29	Mass Enthalpy (Btu/lb)	-3536	-1206	-956.2	-6862					
30	Mass Entropy (Btu/ib-F)	0.4808	1.261	0.3205	0.6508					
31	Heat Capacity (Btu/lbmole-F)	24.13	14.45	50.78	18.59					
32	Mass Heat Capacity (Btu/lb-F)	0.7216	0.4102	0.4842	1.032					
33	Lower Heating Value (Btu/Ibmole)	3.635e+005	7.044e+005	2.019e+006	1.762e-004					
34	Mass Lower Heating Value (Btu/lb)	1.087e+004	2.000e+004	1.925e+004	9.782e-006					
35	Phase Fraction [Vol. Basis]	3.084e-002	3.0846-002	0.6235	0.3457					
36	Phase Fraction (Mass Basis)	1./288-002	1.7288-002	0.5467	0.4300					
37	Partial Pressure of CO2 (psia)	1.5568-002	0.0000	0.0000	0.0000					
38	Cost Based on Flow (Cost/s)	0.0000	8.805	0.0000	0.0000	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
33	Act. Gas Flow (ACFM)	1 477	0.095	0.4130	3 458					
40	Specific Heat (Blu/Ibmole-F)	24 13	14.45	50.78	18.59					
42	Std. Gas Flow (MMSCED)	0.7790	1.278e-002	0.1358	0.6305					
43	Std. Ideal Lig. Mass Density (ib/ft3)	49.40	27.68	43.32	62.30					
44	Act. Lig. Flow (USGPM)	6.854		4.412	2.441					
45	Z Factor		0.9880	6.167e-003	7.349e-004					
46	Watson K	12.72	15.95	12.65	8.509					
47	User Property			-						
48	Partial Pressure of H2S (psia)	0.000.0		. 						
49	Cp/(Cp - R)	1.090	1.159	1.041	1.120					
50	Cp/Cv	1.001	1.167	1.041	1.135					
51	Heat of Vap. (Btu/lbmole)	2.548e+004	••••	_	••••					
52	Kinematic Viscosity (cSI)		5.997	0.8001	1.355					
53	Liq. Mass Density (Std. Cond) (lb/ft3)	53.44	25.57	43.77	03.33					
54	Liq. Vol. Flow (Std. Cond) (barrel/day)	228.8	0.203	152./	64.18	and a second second second				
55	Liquid Fraction (42/hmole)	0.9830	0.000	1.000	0.2820					
00 27	More Heat of Van (R3/10/110/12)	782 0	300.3	2.374	0.2029					
51 58	Phase Fraction (Molar Resis)	0.0164	0.0164	0.1743	0.8093					
59	Surface Tension (dvne/cm)			20.67	75.06					
60	Thermal Conductivity (Btu/hr-ft-F)		1.153e-002	7.069e-002	0.3369					
61	Viscosity (cP)	I	8.897e-003	0.5663	1.383					
62	Cv (Semi-Ideal) (Btu/Ibmole-F)	22.14	12.46	48.79	16.60					
the second se		and the second								

0.6622

24.09

0.3539

12.38 Aspen HYSYS Version 7.1 (23.0.0.7119)

0.4652

48.79

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

(Btu/lb-F)

(Btu/ibmole-F)

Mass Cv (Semi-Ideal)

63

64 Cv

Page 16 of 23 * Specified by user.

0.9215

1				· · ·	Т	Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc						
2 3	asnen	MARKWES Burlington, I	ST HYC MA	DROCARBON, IN		Unit Set:	New	User	 A state of the sta			
4	uopon	USA				Date/Time:	Wed	Jun 27 16:00:53 201	2	an a		
6				· · · · · · · · · · · · · · · · · · ·	┛┫		-	Flui	d Package: Ba	sis-1		
7 8	Materia	al Strear	n: '	Winter Li	iqu	uids To S	ito	rage @'	perty Package: Per	ng-Robinson		
9 10					P	ROPERTIES						
11			·	Overail	Va	apour Phase		Liquid Phase	Aqueous Phase			
12	Mass Cv	(Btu/lb-F)		0.7205		0.3514		0.4652	0.9093			
13	Cv (Ent. Method) (B	(Bturlin C)						· · · · · ·	16.10			
14	Co/Cv (Ent. Method)	(010/10-1-)				 			1 155			
16	Reid VP at 37.8 C	(psia)		40.39		631.3		15.75				
17	True VP at 37.8 C	(psia)		120.9		1071		25.06	2.016			
18	Liq. Vol. Flow - Sum(Std.	((bad)el/day)		245.2		8.263		152.7	84.18			
19 20				<u> </u>			-0.2316					
21					C							
22 Overall Phase Vapour Fra												
23 24	COMPONENTS				I NI	MASS EL OW		MASS FRACTION				
25		(ibmole/hr	<u>)</u>	MULE FRACTION		(ib/hr)			FLOW (barrel/day)	FRACTION		
26	Methane 0.436		364	0.005	;1	7.001	11	0.0024	1.6012	0.0065		
27	Ethane 0.581		5810	0.006	8	17.471	15	0.0061	3.3634	0.0136		
28	Propane	0.8	612	0.010	11	37.978	51 17	0.0133	5.1324	0.0207		
29 30	n-Butane	0.2	636	0.0032		15.6057		0.0005	6.5757	0.0266		
31	i-Pentane	0.5	510	0.0064		39.7528		0.0139	4.3661	0.0176		
32	n-Pentane	0.9	1511	0.011	11	68.6211		0.0240	7.4614	0.0301		
33	3-Mhexane	1.5	i911	0.0186		159.435	50	0.0557	15.8171	0.0639		
34	n-Hexane	0.6	1951	0.0081		59,9004		0.0209	6.1895	0.0250		
35	Benzene	0.0	1078	0.0001		0.6082 9 6704		0.0002	0.0472	0.0002		
30 37	Cyclonexane 23-Moentane	U.1 1 2	019	0.001	13 14	9.6704 120.4332		0.0034	11.8136	0.0034		
38	n-Heptane	1.0	736	0.012	16	107.5807		0.0376	10.7254	0.0433		
39	Toluene	0.1	037	0.001	12	9.5590		0.0033	0.7523	0.0030		
40	2-Mheptane	2.8	1477	0.033	33	325.3004		0.1137	31.7831	0.1284		
41	n-Octane	0.7	792	0.00	<u>)1</u>	89.01	38	0.0311	8.6408	0.0349		
42	E-Benzene	0.0	459	0.000	1 <u>7</u>	6.710 15 A74	אין 1.1	0.0023	0.5286	0.0021		
44	n-Nonane	0.1	1283	0.00	17	106.234	13	0.0371	10.0995	0.0408		
45	n-Decane	0.5	210	0.006	31	74.135	52	0.0259	6.9279	0.0280		
46	n-C11	0.2	2801	0.003	33	43.787	72	0.0153	4.0361	0.0163		
47	n-C12	1.4	1214	0.016	56	242.121	15	0.0847	22.0713	0.0892		
48	H2O	69.2	2406	0.808	אָל אַר	1247.37	72 >2	0.4361	85.5838	0.3458		
49 50	Nitrogen CO2		1019	0.000	10	0.02	36	0.0000	0.0069	0.0000		
51	Oxygen	0.0	1000	0.000	20	0.000	00	0.0000	0.0000	0.0000		
52	Total	85.5	5355	1.000	20	2860.153	35	1.0000	247.5053	1.0000		
53 54			_	,	/ap	our Phase			Phase Fi	action 1.641e-002		
55	COMPONENTS		wc	MOLE FRACTIC	N(MASS FLOW		MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME		
50 57	Methane	0.4	·/	0.293	32	6.602	23	0.1336	1.5100	0.1978		
58	Ethane	0.4	1119	0.293	35	12.387	71	0.2506	2.3847	0.3124		
59	Propane	0.3	3164	0.22	55	13.954	44	0.2823	1.8858	0.2471		
60	i-Butane	0.0	0461	0.03	29	2.68	19	0.0543	0.3268	0.0428		
61	n-Butane	0.1	1172	0.08	35	6.81	26 12	0.1378	0.7998	0.1048		
62 62	n-Pentane	0.0	1324	0.01	27 31	2 333	74 74	0.0377	0.2542	0.0333		
64	3-Mhexane	0.0	1056	0.004	10	0.562	24	0.0114	0.0558	0.0073		
	Liuntoloch I id		A States LIN	10V	O Version 7.4./0	0.0	0.7440)		Dece 17:06:02			

65 Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

MARKWEST HYDROCARBON, IN Burlington, MA USA

1

2

3

4

5 6

7

8 9 aspen

Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Unit Set: NewUser

Date/Time: Wed Jun 27 16:00:53 2012

> Fluid Package: **Basis-1**

Property Package: Peng-Robinson

COMPOSITION

Material Stream: Winter Liquids To Storage @

10 11 **Phase Fraction** 1.641e-002 Vapour Phase (continued) 12 13 LIQUID VOLUME LIQUID VOLUME COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION FLOW (barrel/day) FRACTION 14 (lbmole/hr) (lb/hr) 15 0.0046 0.5574 0.0113 0.0075 n-Hexane 0.0065 0.0576 16 0.0004 0.0001 0.0001 0.0001 0.0057 0.0001 Benzene 0.0008 17 Cyclohexane 0.0009 0.0006 0.0723 0.0015 0.0063 18 0.0095 0.0463 0.0061 23-Mpentane 0.0047 0.0034 0.4717 19 0.0020 0.2806 0.0057 0.0280 0.0037 n-Heptane 0.0028 20 0.0002 0.0002 0.0230 0.0005 0.0018 0.0002 Toluene 21 2-Mheptane 0.0031 0.0022 0.3500 0.0071 0.0342 0.0045 0.0004 0.0013 0.0063 0.0008 22 n-Octane 0.0006 0.0650 0.0000 0.0000 0.0000 0.0046 0.0001 0.0004 23 E-Benzene 0.0001 0.0002 0.0006 0.0001 24 0.0001 0.0082 o-Xylene 0.0003 25 0.0001 0.0229 0.0005 0.0022 0.0002 n-Nonane 0.0001 0.0005 0 0001 26 0.0000 0.0049 n-Decane 0.0000 27 0.0000 0.0001 0.0000 n-C11 0.0000 0.0000 0.0008 28 0.0000 0.0016 0.0000 0.0001 0.0000 n-C12 0.0000 0.0054 0.0184 0.0024 29 H2O 0.0149 0.0106 0.2682 30 0.0008 0.0006 0.0219 0.0004 0.0019 0.0002 Nitrogen 31 0.0011 0.0681 0.0014 0.0057 0.0007 **CO2** 0.0015 0.0000 0.0000 32 0.0000 0.0000 0.0000 0.0000 Oxygen 1.0000 1.0000 33 Total 1.4035 1.0000 49.4286 7.6324 34 **Liquid Phase Phase Fraction** 0.1743 35 LIQUID VOLUME MASS FLOW MASS FRACTION LIQUID VOLUME 36 COMPONENTS MOLAR FLOW **MOLE FRACTION** FLOW (barrel/day) FRACTION 37 (ibmole/hr) (lb/hr) 0.0003 0.0006 38 0.0017 0.3988 0.0912 Methane 0.0249 0.0063 0.0113 5.0843 0.0033 0.9788 39 0.1691 Ethane 0.0154 0.0210 40 0.5448 0.0365 24.0237 3.2466 Propane 41 0.2268 0.0152 13.1838 0.0084 1.6064 0.0104 i-Butane 42 0.8464 0.0568 49.1966 0.0315 5.7759 0.0374 n-Butane 43 0 5251 0.0352 37.8895 0.0242 4.1614 0.0270 i-Pentane 0.0424 7.2073 0.0467 44 0.9187 0.0616 66.2836 n-Pentane 0.1021 0.1016 15.7613 45 3-Mhexane 1.5855 0.1063 158.8726 0.0380 0.0397 46 n-Hexane 0.6886 0.0462 59.3429 6.1319 0.0003 0.0077 0.0005 0.6025 0.0004 0.0468 47 Benzene 0.0076 9.5981 0.0061 0.8406 0.0054 48 0.1140 Cyclohexane 0.0767 11.7673 0.0763 49 1.1972 0.0803 119.9615 23-Mpentane 0.0686 0.0693 0.0718 107.3001 10.6974 50 1.0708 n-Heptane 0.0061 0.7505 0.0049 51 0.0069 9.5361 0.1035 Toluene 324.9504 0.2078 31.7489 0.2057 52 2-Mheptane 2.8447 0.1908 0.0560 0.0569 8.6345 53 0.7787 0.0522 88.9488 n-Octane 0.0034 E-Benzene 0.0042 6.7117 0.0043 0.5282 54 0.0632 0.0078 55 o-Xylene 0.1457 0.0098 15.4673 0.0099 1.1992 0.0679 10.0974 0.0654 56 0.8281 0.0555 106.2114 n-Nonane 0.0474 6.9275 0.0449 57 0.5210 0.0349 74.1303 n-Decane 4.0361 0.0262 58 0.0188 43.7863 0.0280 0.2801 n-C11 0.1548 22.0711 0.1430 0.0953 242.1199 59 n-C12 1.4214 0.0002 0.0000 0.0036 0.0000 0.0522 60 H2O 0.0029 0.0004 0.0000 0.0000 0.0000 61 Nitrogen 0.0000 0.0000 0.0000 0.0000 0.0011 62 CO2 0.0003 0.0000 0.0130 0.0000 63 0.0000 0.0000 0.0000 0.0000 0.0000 Oxygen 1.0000 Total 14.9091 1.0000 1563.6657 1.0000 154.3109 a

Aspen HYSYS Version 7.1 (23.0.0.7119)

Hyprotech Ltd. Licensed to: MARKWEST HYDROCARBON, IN

65

Page 18 of 23 Specified by user.

1

2

3

4

5 6

7

8 9

10

MARKWEST HYDROCARBON, IN Burlington, MA USA Case Name: Smith HYSYS 130 MMSCFD 6-29-2012 hsc

NewUser

Date/Time: Wed Jun 27 16:00:53 2012

2012

Fluid Package:

Basis-1

19:54

1964

Material Stream: Winter Liquids To Storage @

Property Package: Peng-Robinson

COMPOSITION

Unit Set:

11 **Aqueous Phase** Phase Fraction 0.8093 12 13 LIQUID VOLUME COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME 14 (Ibmole/hr) FLOW (barrel/day) FRACTION (lb/hr 15 Methane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ethane 17 Propane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 i-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 19 0.0000 0.0000 0.0000 0.0000 0.0000 n-Butane 0.0000 20 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Pentane 22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3-Mhexane 0.0000 0.0000 23 0.0000 0.0000 0.0000 0.0000 n-Hexane 0.0000 0.0000 0.0000 24 Benzene 0.0000 0.0000 0.0000 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Cyclohexane 0.0000 0.0000 0.0000 0.0000 26 23-Mpentane 0.0000 0.0000 27 0.0000 0.0000 0.0000 0.0000 0.0000 n-Heptane 0.0000 28 0.0000 0.0000 0.0000 0.0000 0.0000 Toluene 0.0000 29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2-Mheptane 30 n-Octane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 31 E-Benzene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 32 o-Xylene 0.0000 0.0000 0.0000 0.0000 33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 n-Nonane 34 0.0000 0.0000 0.0000 0.0000 n-Decane 0.0000 0.0000 35 0.0000 0.0000 0.0000 n-C11 0.0000 0.0000 0.0000 36 n-C12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 37 1.0000 1247.0568 1.0000 85.5618 1.0000 H2O 69.2229 38 Nitrogen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0025 0.0000 0.0002 0.0000 39 CO2 0.0001 0.0000 0.0000 0.0000 40 0.0000 0.0000 0.0000 Oxygen 0.0000 41 1.0000 1247.0592 1.0000 85.5620 1.0000 69.2229 Total 42 Fluid Package: **Basis-1** Material Stream: Summer Liquid to Storage @ 43 **Property Package:** Peng-Robinson 44 45 CONDITIONS 46 47 Overall Vapour Phase **Liquid Phase Aqueous Phase** 48 Vapour / Phase Fraction 0.0015 0.0015 0.0207 0.9778 49 Temperature: (F)94.09 94.09 94.09 94.09 50 Pressure: 14.10 14.10 14.10 14.10 (psia) (MMSCFD) 51 0.4689 6.913e-004 9.709e-003 0.4585 Molar Flow 52 1063 2.610 153.1 906.9 Mass Flow (lb/hr) 14.31 62.23 53 Std Ideal Lig Vol Flow (barrei/day) 76.93 0.3956 54 -1.227e+005 -4.479e+004 -1.280e+005 -1.227e+005 Molar Enthalpy (Btu/ibmole) 55 (Btu/ibmole-F) 14.35 46.04 56.77 13.41 Molar Entropy 56 (Btu/hr) -6.319e+006 -3400 -1.365e+005 -6.179e+006 **Heat Flow** 57 Liq Vol Flow @Std Cond (barrel/day) 73.86 0.4228 14.21 61.22 58 PROPERTIES 59

60			Overall	Vapour Phase	Liquid Phase	Aqueous Phase	
61	Molecular Weight		20.64	34.39	143.6	18.02	
62	Molar Density	(lbmole/ft3)	1.037	2.394e-003	0.3142	3.466	
63	Mass Density	(ib/ft3)	21.41	8.232e-002	45.13	62.44	
64	Act. Volume Flow	(barrel/day)	212.1	135.5	14.50	62.09	
65	Hyprotech Ltd;		Aspen H	YSYS Version 7.1 (23.	0.0.7119)	网络马克马克克马克马克	Page 19 of 23

Licensed to: MARKWEST HYDROCARBON, IN

* Specified by user.

2

3

MARKWEST HYDROCARBON, IN Burlington, MA USA

Case Name:

Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Unit Set: NewUser

4 Wed Jun 27 16:00:53 2012 Date/Time: 5 6 Fluid Package: Basis-1 Material Stream: Summer Liquid to Storage @ 7 Property Package: Peng-Robinson 8 9 PROPERTIES 10 Liquid Phase **Aqueous Phase** 11 Overall Vapour Phase 12 -5946 -1303 -891.1 -6813 Mass Enthalpy (Btu/lb) 1.339 0.3952 0.7443 13 0 6955 Mass Entropy (Btu/lb-F) 15.02 72.53 18.56 14 19.68 **Heat Capacity** (Btu/lbmole-F) 15 (Btu/lb-F) 0.9532 0.4368 0.5050 1.030 Mass Heat Capacity 6.704e+005 2.753e+006 1.023e-003 16 Lower Heating Value (Btu/lbmole) 5.799e+004 17 2809 1.949e+004 1.916e+004 5.678e-005 Mass Lower Heating Value (Btu/lb) 18 5.143e-003 0.1860 0.8089 5.143e-003 Phase Fraction [Vol. Basis] 19 2.456e-003 0.8534 2.456e-003 0.1441 Phase Fraction [Mass Basis] 20 Partial Pressure of CO2 (psia) 2.487e-002 0.0000 21 Cost Based on Flow (Cost/s) 0.0000 0.0000 0.0000 0.5285 22 Act. Gas Flow (ACFM) 2.861 0.8203 0.3186 3.458 23 (lbmole/ft3) Avg. Liq. Density 24 15.02 72.53 18.56 Specific Heat (Btu/lbmole-F) 19.68 6.914e-004 25 0.4689 9.709e-003 0 4585 Std. Gas Flow (MMSCFD) 26 Std. Ideal Lig. Mass Density (lb/ft3) 59.05 28.21 45.76 62.30 27 Act. Lig. Flow (USGPM) 2.234 0.4230 1.811 28 0.9911 7.551e-003 6.846e-004 Z Factor 29 Watson K 12.69 15.84 12.67 8.521 30 **User Property** ---31 **Partial Pressure of H2S** 0.0000 (psia) --------1.028 32 Cp/(Cp - R) 1.112 1.152 1.120 33 1.000 1.158 1.028 1.153 Cp/Cv (Btu/ibmole) 2.451e+004 34 Heat of Vap. 0.7257 35 Kinematic Viscosity 7.395 1.113 (cSt) 36 Liq. Mass Density (Std. Cond) (lb/ft3) 26.39 46.05 63.33 61.50 37 Liq. Vol. Flow (Std. Cond) (barrel/day) 73.86 0.4228 14.21 61.22 38 0.9985 0.0000 1.000 1.000 Liquid Fraction 39 Molar Volume (ft3/lbmole) 0.9639 417.7 3.183 0.2885 40 Mass Heat of Vap. (Btu/lb) 1188 41 Phase Fraction [Motar Basis] 0.0015 0.0015 0.0207 0.9778 42 Surface Tension 21.40 70.45 (dyne/cm) 43 1.330e-002 0.3608 (Btu/hr-ft-F) 7.294e-002 Thermal Conductivity ••• 44 0 7259 9.751e-003 0.8045 Viscosity (cP) 45 16.58 Cv (Semi-Ideal) (Btu/lbmole-F) 17.69 13.03 70.54 46 Mass Cv (Semi-Ideal) 0.8570 0.3791 0.4911 0.9202 (Btu/lb-F) 47 (Btu/lbmole-F) 19.67 12.97 70.54 16.10 Cv 48 0.9530 0.3771 0.4911 0.8939 (Btu/lb-F) Mass Cv 49 15.76 (Btu/lbmole-F) Cv (Ent. Method) ----.... *** 50 0.8747 Mass Cv (Ent. Method) (Btu/lb-F) ----51 Cp/Cv (Ent. Method) 1.178 52 22.83 666.4 6.937 Reid VP at 37.8 C (psia) 53 True VP at 37.8 C (psia) 93.61 1165 14.82 10.48 54 Liq. Vol. Flow - Sum(Std. Coade!/day) 75.86 0.4228 14.21 61.22 55 -1.129 -0.8612 **Viscosity Index** 56 COMPOSITION 57 58 0.0015 Vapour Fraction **Overall Phase** 59 LIQUID VOLUME LIQUID VOLUME 60 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION FLOW (barrel/day) FRACTION (lb/hr) 61 (lbmole/hr) 0.0924 0.0012 62 Methane 0.0252 0.0005 0.4042 0.0004

0.0005

0.0008

0.0260

0.0323

0.7806

1.4252

Aspen HYSYS Version 7.1 (23.0.0.7119)

0.0007

0.0013

Hyprotech Ltd Licensed to: MARKWEST HYDROCARBON, IN

63

64

65

Ethane

Propane

Page 20 of 23 * Specified by user.

0.1503

0.1926

0.0020

1				Case Name: Sn	nlih HYSYS 130 MMSC	CFD 6-29-2012.hsc						
3	aspen	Burlington, MA		Unit Set: Ne	wUser							
4		USA		Date/Time: We	ed Jun 27 16:00:53 20	12						
6					Flu	id Package: Bas	is-1					
7 8	Materia	al Stream:	Summer I	liquid to St	corage @ Pro	operty Package: Pen	g-Robinson					
9 10				COMPOSITION								
11		·· · · · · · · · · · · · · · · · · · ·	Overall	Phase (continued))	Vapour Fi	Vapour Fraction 0.0015					
12	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION							
14		(ibmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION					
15	i-Butane	0.0092	0.0002	0.5325	0.0005	0.0649	0.0008					
16	n-Butane	0.0305	0.0006	1.//43	0.0017	0.2083	0.0027					
17	i-Pentane	0.0158	0.0003	1,1425	0.0011	0.1255	0.0016					
18	n-Pentane	0.0259	0.0005	1.8/22	0.0018	0.2030	0.0020					
19	3-mnexane	0.0374	0.0007	3.1431	0.0035	0.3714	0.0040					
20	n-riexane Baasaa	0.0109	0.0003	1.4004	0.0014	0.1505	0.0020					
	Benzene	0.0002	0.0000	0.0143	0.0000	0.0011	0.0000					
22		0.0027	0.0001	0.2305	0.0002	0.0202	0.0003					
23	23-Mpentane	0.0284	0.0008	2.8429	0.0027	0.2789	0.0030					
24	n-Heptane	0.0252	0.0005	2.5289	0.0024	0.2521	0.0033					
25		0.0024	0.0000	0.2197	0.0002	0.0173	0.0002					
26	2-Mneptane	0.0738	0.0014	8.4300	0.0079	0.0230	0.0107					
27	n-Octane	0.0216	0.0004	2.4093	0.0023	0.2397	0.0031					
28	E-Benzene	0.0017	0.0000	0.1010	0.0002	0.0143	0.0002					
29	o-Xylene	0.0043	0.0001	0.4540	0.0004	0.0352	0.0005					
30	n-Nonane	0.0374	0.0007	4./930	0.0045	0.4559	0.0059					
31	n-Decane	0.0498	0.0010	7.08/9	0.0067	0.6624	0.0080					
32	n-C11	0.0629	0.0012	9.8315	0.0093	0.9062	0.0118					
33	n-C12	0.6072	0.0118	103.4217	0.0973	9.4277	0.1220					
34	H2O	50.3480	0.9779	907.0248	0.6535	02.2319	0.0090					
35	Nitrogen	0.0001	0.0000	0.0019	0.0000	0.0002	0.0000					
36	COZ	0.0002	0.0000	0.0004	0.0000	0.0007	0.0000					
20	Uxygen	61 4951	1.0000	1062 6748	1 0000	76 9268	1 0000					
39		51.4651	<u>1.0000</u>	anour Phase	1.0000	Phase Fr	action 1 474e-003					
40			•••			1 11000 1 11						
41 42	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION					
43	Methane	0.0236	0.3114	0.3792	0.1453	0.0867	0.2192					
44	Ethane	0.0194	0.2559	0.5842	0.2238	0.1125	0.2843					
45	Propane	0.0150	0.1972	0.6601	0.2529	0.0892	0.2255					
46	i-Butane	0.0023	0.0309	0.1361	0.0522	0.0166	0.0419					
47	n-Butane	0.0061	0.0803	0.3542	0.1357	0.0416	0.1051					
48	i-Pentane	0.0014	0.0189	0.1035	0.0396	0.0114	0.0287					
49	n-Pentane	0.0018	0.0241	0.1321	0.0506	0.0144	0.0363					
50	3-Mhexane	0.0004	0.0049	0.0375	0.0144	0.0037	0.0094					
51	n-Hexane	0.0004	0.0052	0.0340	0.0130	0.0035	0.0089					
52	Benzene	0.0000	0.0001	0.0003	0.0001	0.0000	0.0001					
53	Cyclohexane	0.0001	0.0007	0.0045	0.0017	0.0004	0.0010					
54	23-Mpentane	0.0003	0.0041	0.0310	0.0119	0.0030	0.0077					
55	n-Heptane	0.0002	0.0026	0.0195	0.0075	0.0019	0.0049					
56	Toluene	0.0000	0.0002	0.0016	0.0006	0.0001	0.0003					
57	2-Mheptane	0.0003	0.0034	0.0296	0.0113	0.0029	0.0073					
58	n-Octane	0.0001	0.0007	0.0063	0.0024	0.0006	0.0015					
59	E-Benzene	0.0000	0.0001	0.0005	0.0002	0.0000	0.0001					
60	o-Xylene	0.0000	0.0001	0.0009	0.0003	0.0001	0.0002					
61	n-Nonane	0.0000	0.0004	0.0042	0.0016	0.0004	0.0010					
62	n-Decane	0.0000	0.0002	0.0021	0.0008	0.0002	0.0005					
63	n-C11	0.0000	0.0001	0.0010	0.0004	0.0001	0.0002					
64	n-C12	0.0000	0.0003	0.0041	0.0016	0.0004	0.0009					
165	Hyprotech Ltd.		Aspen HYS	SYS Version 7.1 (23)	U.U.7119)	a a the provident of the first of	Page 21 of 23					

65 Hyprotech Ltd, Licensed to: MARKWEST HYDROCARBON, IN

MARKWEST HYDROCARBON, IN Burlington, MA USA

aspen

Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

NewUser

Date/Time: W

Unit Set:

Wed Jun 27 16:00:53 2012

2012

6 7 8	Material Stream: Summer Liquid to Storage @ Fluid Package: Basis-1 Property Package: Peng-Robinson											
9 10			C	OMPOSITION								
11 12			Vapour Ph	ase (continued)		Phase Fra	iction 1.474e-003					
13 14	COMPONENTS	MOLAR FLOW (Ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION					
15	H2O	0.0042	0.0556	0.0761	0.0291	0.0052	0.0132					
16	Nitrogen	0.0001	0.0009	0.0019	0.0007	0.0002	0.0004					
17	CO2	0.0001	0.0018	0.0059	0.0023	0.0005	0.0012					
18	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
19	Total	0.0759	1.0000	2.6103	1.0000	0.3956	1.0000					
20 21			Liqu	uid Phase	Phase Fra	action 2.071e-002						
22	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME					
23		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION					
24	Methane	0.0016	0.0015	0.0249	0.0002	0.0057	0.0004					
25	Ethane	0.0065	0.0061	0.1964	0.0013	0.0378	0.0026					
26	Propane	0.0174	0.0163	0.7651	0.0050	0.1034	0.0072					
27	i-Butane	0.0068	0.0064	0.3964	0.0026	0.0483	0.0034					
28	n-Butane	0.0244	0.0229	1.4201	0.0093	0.1667	0.0117					
29	i-Pentane	0.0144	0.0135	1.0391	0.0068	0.1141	0.0080					
30	n-Pentane	0.0241	0.0226	1.7401	0.0114	0.1892	0.0132					
31	3-Mhexane	0.0370	0.0347	3.7062	0.0242	0.3677	0.0257					
32	n-Hexane	0.0165	0.0155	1.4224	0.0093	0.1470	0.0103					
33	Benzene	0.0002	0.0002	0.0139	0.0001	0.0011	0.0001					
34	Cyclohexane	0.0027	0.0025	0.2260	0.0015	0.0198	0.0014					
35	23-Mpentane	0.0281	0.0263	2.8119	0.0184	0.2758	0.0193					
36	n-Heptane	0.0250	0.0235	2.5094	0.0164	0.2502	0.0175					
37	Toluene	0.0024	0.0022	0.2181	0.0014	0.0172	0.0012					
38	2-Mheptane	0.0735	0.0690	8.4004	0.0549	0.8208	0.0574					
39	n-Octane	0.0216	0.0202	2.4630	0.0161	0.2391	0.0167					
40	E-Benzene	0.0017	0.0016	0.1814	0.0012	0.0143	0.0010					
41	o-Xylene	0.0043	0.0040	0.4537	0.0030	0.0352	0.0025					
42	n-Nonane	0.0374	0.0350	4.7908	0.0313	0.4555	0.0318					
43	n-Decane	0.0498	0.0467	7.0857	0.0463	0.6622	0.0463					
44	n-C11	0.0629	0.0590	9.8305	0.0642	0.9061	0.0633					
45	n-C12	0.6071	0.5695	103.4176	0.6754	9,42/3	0.6590					
46	H2O	0.0008	0.0007	0.0140	0.0001	0.0010	0.0001					
47	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
48	CO2	0.0000	0.0000	0.0011	0.0000	0.0001	0.0000					
49	Oxygen	0.0000	0.0000	0.0000	0.0000	14 2054	1.0000					
50 51	10(8)	1.0661	1.0000 1	153.1263	1.0000	14.3054	1.0000					
52		r	Aque			Fliase Flia						
53 54	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	FLOW (barrel/day)	FRACTION					
55	Methane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
56	Ethane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
57	Propane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
58	i-Butane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
59	n-Butane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
60	i-Pentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
61	n-Pentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
62	3-Mhexane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
63	n-Hexane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
64	Benzene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					

1

65

MARKWEST HYDROCARBON, IN Burlington, MA USA Case Name: Smith HYSYS 130 MMSCFD 6-29-2012.hsc

Unit Set: NewUser

Date/Time: Wed Jun

Wed Jun 27 16:00:53 2012

Fluid Package: Basis-1

Material Stream: Summer Liquid to Storage @

Property Package: Peng-Robinson

COMPOSITION

11 12				Phase Fraction 0.977				
13 14	COMPONENTS	MOLAR FLOW (ibmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
15	Cyclohexane	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	
16	23-Mpentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
17	n-Heptane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
18	Toluene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
19	2-Mheptane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
20	n-Octane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
21	E-Benzene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
22	o-Xylene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
23	n-Nonane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
24	n-Decane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
25	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
26	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
27	H2O	50.3430	1.0000	906.9347	1.0000	62.2257	1.0000	
28	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
29	CO2	0.0000	0.0000	0.0015	0.0000	0.0001	0.0000	
30	Oxygen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
31	Total	50.3431	1.0000	906.9362	1.0000	62.2258	1.0000	

Hyprotech: Ltd, Licensed to: MARKWEST HYDROCARBON, IN

Section 7

Equipment Specifications

Waukesha

P9390GSI

VHP® Senes Gas Engine 1320 - 1980 BHP (984 - 1476 kWb)

Specifications

Cylinders: V16

Piston Displacement: 9388 cu. in. (1541) Bore & Stroke: 9.375" x 8.5" (238 x 216 mm) Compression Ratio: 8:1 Jacket Water System Capacity: 148 gal. (560 L) Lube Oil Capacity: 165 gal. (625 L) Starting System: 125 - 150 psi air/gas 24V electric Dry Weight: 28,750 lb.(13,041 kg)

Standard Equipment

AIR CLEANER - Engine mounted. Dry type, including pad type precleaner and service indicator. For sheltered installation and average dust environment. BARRING DEVICE - Manual.

BEARINGS - Heavy duty, replaceable, precision type.

BREATHER - Ejector type, extractor, plumbed into exhaust stream.

CONNECTING RODS - Drop forged steel, rifle drilled.

CONTROL SYSTEM - Pneumatic, Includes pilot operated valves for air start and prelube, Engine mounted control panel with two push button valves. Pilot operated air start valves omitted when starter is not furnished by Waukesha.

CRANKCASE - Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors.

CRANKSHAFT - Counterweighted, forged steel, ten main bearings, and dynamically balanced.

CRANKSHAFT PULLEY, FRUNT SEGMENT - Ten inch (254 mm) pitch diameter pulley, with six o-section drive grooves, front end drive assembly, and outboard bearing. Outboard bearing not mounted. Includes engine mounted stub shaft and coupling quard.

CYLINDERS Removable wat type bainitie cast iron cylinder linera, chrome plated on outer diameter.

CYLINDER HEADS - Sixteen interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. I fard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods.

ENGINE ROTATION - Counterclockwise when facing flywheel.

EXHAUST OUTLET - Single vertical at center. Hexible stainless steel connection with 14* (356 mm) flanges.

FLYWHEEL - Approx. WR² = 155000 lb-in²; with ring gear (208 teeth), machined to accept two drive adapters; 31.88" (810 mm) pilot bore, 30.25" (768 mm) bolt circle, (12) .75" - 10 tapped holes, or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625" - 11 tapped holes and (12) 0.75"-10 tapped holes. FLYWHEEL GUARD

FUEL SYSTEM - Dual, natural gas, 4" (102 mm) duplex downdraft. Two mounted Fisher 99, 2" (51 mm) gas regulators, 30 - 60 psi (207 - 414 kPa) inlet pressure required.

GOVERNOR - Woodward UG-6LD hydraulic lever type, with friction type speed control. Mounted on right hand side.

IGNITION -- Waukesha Custom Engine Control Ignition Module. Electronic digital ignition system. 24V DC power required.

INSTRUMENT PANEL - Engine mounted, includes jacket water temperature, lube oil pressure, lube oil temperature, intake manifold compound vacuum

pressure, intake manifold temperature gauges, and digital electronic tachometer. INTERCOOLER - Air-to-water.

LEVELING BOLTS

LIFTING EYES

LUBRICATION - Full pressure, Gear type pump. Full flow filter, 45 gallon (170 litres) capacity, not mounted. Includes lube oil strainer (mounted on engine) and flexible connections (shipped loose). Air/gas motor driven prelube pump, Requires final piping.

MANIFOLOS - Exhaust, (2) water cooled

OIL COOLER - With thermostatic temperature controller and pressure regulating valve. Not mounted.

OIL PAN - Base type. 165 gallon (625 litres) capacity including filter and cooler. PAINT - Oilfield orange primer.

PISTONS - Aluminum with floating pin. Oil cooled.

SHIPPING SKID - For domestic truck or rail.

TURBOCHARGERS - Two with water cooled bearing housings. Wastegate controlled.

VIBRATION DAMPER - Viscous type. Guard included with remote mounted radiator or no radiator.

WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT - Belt driven water circulating high capacity pump for intercooler and lube oil cooler. See \$6535-14 performance curve for use with standard 10" diameter crankshaft pulley.

WATER CIRCULATING SYSTEM, ENGINE JACKET - Belt driven water circulating pump, 175 - 180° F (79 - 82° C) individual cylinder thermostats, full flow bypass. Flange connections and mating flanges for (2) 4.5* (114 mm) inlets and (1) 6* (152 mm) outlet.

POWER RATINGS: P9390GSI VHP Series Gas Engines

(1516)	(\$86)	(1368)	(2011)	(1250)	(1530)	(1852)	(9271)				
1631	1350	1832	1482	5039	1650	2447	0861	(124) 8886	9.375" x 8.5" (238 x 216)	1:8	IS906E6d
	9		0		Э	1	0	(sevil), (il tes)	Bore & Stroke in. (mm)	'8'D	leboM
Wdt	908	Wdb	006	, Wat	0001	WdB	1500	Displ. cu.			

	STATE AND	(polarity) (straight)	COLUMN POWER	IS STATES IN DURING MICH.	DERMISSION	and the second second	THESE KONSTRUCTION	
and the second		1			3	2011		
omer pub (KMp)	0861	(92\$1)	2447	(1825)	0991	(0221)	2039	(0251)
SFC (LHV) Btu/bhp-hr (KJ/KWh)	2611	(11022)	2163	(62601)	8191	(10823)	2405	Z8901)
(WX) 0001 x rt/ut8 noitgmuano0 fee	12458	(1251)	18997	(9955)	15619	(3638)	66091	(0151)
0x ð,pþb-þr. (mð,um, @ 2% 0)	13'00	(3184)	13.00	(\$185)	13.00	(4815)	13.00	(9184)
0 a/pµb-µr (wa/uw, 🕲 2 % 0°)	00.6	(3333)	00.6	(3333)	00.6	(3333)	00.6	(3333)
+C 0\pµb-µt (ш0\um ₃ @ 2% 0')	5.00	(127)	5.00	(172)	2.00	(102)	5.00	(172)
(0 %5 @ mu\pm) tr (mg/nm) @ 5% 0)	0.30	(111)	0.30	(111)	0'30	(111)	0.30	(111)
eat to Jacket Water Btu/nr x 1000 (kW)	1067	(1439)	0269	(1232)	1814	(1221)	0914	(\$681)
(WA) 0001 × 11/018 liD edu Lube	210	(051)	969	(124)	423	(133)	119	(121)
est to Intercooler Btu/hr x 1000 (kW)	314	(26)	991	(136)	510	(19)	573	(08)
(WV) 000t x m/ut8 noiteibeR of fee	SIL	(602)	948	(248)	638	(781)	LLL	(82S)
tal Exhaust Heat Btu/hr x 1000 (kW)	4227	(1327)	2995	(1991)	3404	(866)	4560	(8421)
duction Air Flow sctm (Mm ³ /hr)	3081	(4132)	3202	(5384)	2520	(5853)	2745	(\$222)
chaust Flow Ib/hr (kg/hr)	13713	(6220)	16320	(2403)	11216	(8803)	12810	(0182)
(0°) 3° enterenneT tailed			0.000	100 00 101		100.27		1

Typical heat data is shown, however no guarantee is expressed or implied. Consult your Dresser Waukesha Application Engineering Department for system

All natural gas engine ratings are based on a fuel of 900 Btu/ft³ (35.3 MJ/nm³) SLHV, with a 91 WKI®. For conditions of fuels other than standard, consult the application assistance.

Data based on standard contribute v12°C (5°C) ampletatives. 29.53 inches 4g (100kPa) berometric pressure; 30% relative humidity (5.9°C) and the pressure in the standard on th Dresser Waukesha Application Engineering Department.

KPa water vapor pressure).

XHJ2 (mn/LM 5.55) 4hUT8 00e is privert sep listifier prison recommendation of x3+ to eone role of thim 2001-1/3406003 no based notigniture of the

.%2+ notigmuence lout no based attabled.

± 10° F (5° C). Ratings are also valid for SAE U13A9, 055514, DIN6271 and AP170-11C standard atmospheric conditions. Is a balance of 90% and Tota (1.01 as the 20% of 90% of 90% of 90% of 90% and Tota (clause 10.1) as specified shove limited to Heat rejection based on cooling exhaust temperature to 77°F (25°C).

per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or a maximum load indicated by the intermittent C = ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours per day, seven days per week, 365 days

I = Intermittent Service flating: The highest load and apped that can be applied in variable speed mechanical system application only. Operation at this rating, whichever is lower, for two hours in every 24 hour period.

rating is limited to a maximum of 3500 hours per year.

where otherwise specifically guaranteed by the manufacturer. equipment specifications as herein set for the properties of the properties with respect to equipment previously and the process of construction of the process of the p Consult your local Wairkesha representative for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or

(uu) 5282) (www 8/61) .98.11 .Z1'091

(ww /90%) .21'091

euseynew

www.dresser.com/waukesha

D 2010 Dresser, Inc. Mi rights reserved. Weakesing, MR, F.S.M. Microspin, and WM are building/Screeged trademarks of Dresser, Inc., Dresser Wauknaha

115'00.

Bulletin 7012 0710

F. 262 549 2795 1, 262 547 3311

Waukesha, WI 53188-4999 eunevA lus9 .12 teeW 1011 Dresser Waukesha Dresser, Inc.

ENVIRONMENTAL 9

VHP EMISSIONS LEVELS

MODEL	CARBURETOR		GRAM	8/8HP-HR		% OBSERVED DRY		MASS	VOLUME	EXCESS
		NO _x ⁽¹⁾	CO	NMHC ^{#1}	THC	co	0,	AFR	AFR	RATIO
	Lowest Manifold (Best Power)	8.5	32.0	0.35	2.3	1.15	0.30	15.5:1	9.3:1	0.97
	Equal NOx & CO	12.0	12.0	0.35	2.3	0.46	0.30	15.9:1	9.6.1	0.00
G, GSI	Catalytic Conv. Input (3-way ³)	13.0	9.0	0.30	2.0	0.38	0.30	15.95:1	9.6:1	0.99
	Standard (Best Economy)	22.0	1.5	0.25	1.5	0.02	1.35	17.0:1	10.2:1	1.06
F3514GSI	Equal NOx & CO	14.0	14.0	0.26	1.1	0.45	0.30	15.85:1	9.5.1	0.99
F3524GSI L7044GSI	Calaytic Conv. Input (3-way)	15.0	13.0	0.20	1.0	0.38	0.30	15.95:1	9.6:1	0.99
	Equal NOx & CO	13.5	13.5	0.45	3.0	0.45	0.30	15 85'1	9.6.1	0.00
L5794GSI	Catalylic Conv. Input (3-way ³)	14.5	11.0	0.45	2.9	0.38	0.30	15.95:1	9.6:1	0.99
GL	Standard	1.5	2.85	1.0	5.5	0.06	9.8	28.0.1	18 8'1	1 74
L5774LT	Standard	2.6	2.0	0.60	4.0	0.04	8.0	24.7:1	14 81	4.64
L5794LT	Standard	2.6	2.0	0.60	4.0	0.04	7.8	24.5:1	14.7:1	1.52

*L5774LT and L5794LT emission levels are based on 1000 - 1200 rpm operation. For information at all other speeds Contact Waukesha's Sales Application Engineering Department.

275GL/AT-GL EMISSION LEVELS [‡]

MODEL	CARBURETOR SETTING	GRAM9/BHP-HR				% OBSEF	IVED DRY	MASS	VOLUME	EXCESS
		NO _x ⁽¹⁾	СО	NMHC ⁽⁴⁾	THC	co	O ₂	AFR ^(A)	AFR (1)	AIR RATIO
275GL/AT27GL	32:1	2.0	1.5	0.40	3.5	0.05	11.2	32.0:1	19.2:1	2.00
275GL+	34 1	05	1.6	0.6	6.0	0.04	11.6	34:1	20.4	2.12

⁺ These AT-GL emission levels are based on 900 – 1000 rpm operation. For information at all other speeds contact Waukesha's Sales Application Engineering Department.

NOTE: The above table indicates emission levels that are valid for new engines for the duration of the standard warranty period and are attainable by an engine in good operating condition running on commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) SLHV, Waukesha Knock Index[®] of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKI® with an absolute humidity of 42 grains/lb. Refer to engine specific WKI® Power & Timing curves for standard timing. Unless otherwise noted these emission levels can be achieved across the continuous duty speed range and from 75% to 110% of the ISO Standard Power (continuous duty) rating. Contact your local Waukesha representative or Waukesha's Sales Application Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings. fuels, and site conditions.

			Page 3 01 11
Waukesha	GAS ENGINE EXHAUST EMISSION LEVELS	EN: 152605 DATE: 6/10	Ref. 8483-6

FORMALDEHYDE EMISSION LEVELS

The following table provides formaldehyde (CH₂O) levels that are valid for new engines for the duration of the standard warranty period and are attainable by an engine in good operating condition running on commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) SLHV, Waukesha Knock Index[®] of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Values are based on standard engine timing at 91 WKI[®] with an absolute humidity of 42 grains/lb. Refer to engine specific WKI[®] Power & Timing curves for standard timing. Unless otherwise noted, these emission levels can be achieved across the continuous duty speed range at the load levels tabulated. <u>Contact the local Waukesha representative or Waukesha's Sales Application Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.</u>

	CARB. SETTING	CH ₂ O GRAMS/ BHP-HR PERCENT LOAD		% OBSERVED DRY		MASS	VOLUME	EXCESS
MODEL					_	AFR ⁽²⁾	AFR ⁽²⁾	AIR
		100%	75%		02			KANO
0750L (17070)	Lean Burn	0.18	0.20	0.06	9.8	28.0:1	16.8:1	1.74
275GL/AT27GL	Ultra Lean	0.18	0.20	0.05	11.2	32.0:1	19.2:1	2.00
12V220GL/APG2000 18V220GL/APG3000	Ultra Lean	0.23	0.29	0.09 - 0.15	12.3 - 13.4	32.1 – 35.3	19.3 – 21.2	2.03 - 2.20
16V150LTD/APG1000	Lean Burn	0.14	0.15	0.07	9.5 - 9.6	26.9 - 27.2	16.2 - 16.4	1.68 – 1.7
VHP G, GSI	Rich Burn	0.05	0.05	0.02 - 1.15	0.30 - 1.35	15.5:1 - 17.0:1	9.3:1 - 10.2:1	0.97 - 1.06
VHP Series 4 GSI	Rich Burn	0.05	0.05	0.02 - 0.45	0.30 - 1.35	15.85:1 - 17.0:1	9.5:1 - 10.2:1	0.99 - 1.06
L5774LT L5794LT	Lean Burn	0.22	0.25	0.04	7.8 - 8.0	24.5:1 - 24.7:1	14.7:1 - 14.8:1	1.52 – 1.54
VHP GL	Lean Burn	0.29	0.34	0.06	9.8	28.0:1	16.8:1	1.74
VGF G, GSID	Rich Burn	0.05	0.05	0.20 - 1.1	0.18 - 2.4	15.5:1 - 18.0:1	9.3:1 - 10.8:1	0.97 - 1.12
VGF GL, GLD, GLD/2	Lean Burn	0.19	0.22	0.03 - 0.04	7.8 - 9.0	21.5:1 - 25.4:1	13.9:1 - 15.2:1	1.53 - 1.65
VSG G, GSI, GSID	Rich Burn	0.05	0.05	0.02 - 1.15	0.29 - 2.10	15.5:1 - 17.7:1	9.3:1 - 10.6:1	0.97 - 1.10

Waukesha

GAS ENGINE EXHAUST EMISSION LEVELS EN: 152605 Ref. S DATE: 6/10 8483-6

Page 6 of 11

JME Johnson Matthey Catalysts

400 LAPP ROAD, MAL	VERN, PA. 19355		T (484) 320-2136	F (484) 320-2	152 ww	w.jmusa.com
Dearing Compress	sor & Pump			1	Date	4/8/2011
3974 Simon Road				1	ENGINE DAT	TA SHEET
Youngstown, OH	44512			1	Email:	mike@dearingcomp.com
Attn: Mr Mike Eri	ckson			1	Phone:	330-599-5720
					Fax:	330-599-5801
ENGINE DATA	Rich Burn]			
Engine Mfg:			Waukesha			
Engine Model:			P9390GS1			
Bhp:			1980			
RPM:			1200			
Load:			100%			
Fuel:			Natural Gas			
Temp into Catalyst, °F:			1215			
Operating Hours, hrs/yr:			8760			
ENGINE PERFORMANCE		•]			
Exhaust Flow, acfm:			10214.42321			
Exhaust Flow, scfm:			3171			
Exhaust Flow, scfh:			190263			
Exhaust Flow, lb/hr:			14343			
Exhaust MW:			28.6			
TYPICAL (Rich Burn)	MW]			
Ar, vol %:	39.9		-			
N2, vol %:	28.0		79,70			
O2, vol %:	32.0		0.30			
H2O, vol%:	18.0		10.00			
CO2, vol %:	44.0		10.00			
EMISSIONS DATA			PRE	POST	% Reduction	1
NOx as NO2, g/Bhp-hr:			13.00	0.15	98.8%	
NOx as NO2, lb/hr:			56.76	0.65		-
NOx as NO2, tons/yr:			248.59	2.87		
NOx as NO2, ppmv:			2,461.79	28.41		
NOx as NO2, ppmvd @ 15% ()2 :		784.69	9.05		
CO, g/Bhp-hr:			9.00	0.25	97.2%]
CO, lb/hr:			39.29	1.09		-
CO, tons/yr:			172.10	4.78		
CO, ppmv:			2,799.94	77.78		
CO, ppmvd @ 15% O2:			892.47	24.79		-
VOC (NMNEHC), g/Bhp-hr:			0,12	0.05	60.0%	J
VOC (NMNEHC), lb/hr:			0.52	0.21		
VOC (NMNEHC), tons.yr.:			2.29	0.92		
VOC (NMNEHC), ppm:			65.33	26.13		
VOC (NMNEHC), ppm @ 159	% o2:		20.82	8.33		-
CH2O, g/Bhp-hr:			0.05	0.01	80.0%	
CH2O, lb/hr:			0.22	0.04		
CH2O, tons.yr.:			0.96	0.19		
CH2O, ppm:			27.22	5.44		
CH2O, ppm @ 15% o2:			8.68	1.74		
Scope of Supply			QXH-O-90	-Quad		
Jack Carroll Sr. Sales Engin	cer	phone:	484-320-2121	rax : 484-320-21	.52	email: carrojj@jmusa.com
Table I Engine Rich burn						Johnson Matthey

Section 8

Copy of Existing GP-5

March 20, 2012

CERTIFIED MAIL: 7000 1670 0004 1442 9779

Nathan Wheldon MarkWest Liberty Midstream & Resources, LLC 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202

Re: GP5-63-00968 Smith Compressor Station Smith Twp Washington County

Dear Mr. Wheldon:

The Department has evaluated your application to use General Plan Approval and General Operating Permit GP-5 for *Natural Gas, Coal Bed Methane or Gob Gas Production or Recovery Facility* (GP-5) for authorization to construct and/or operate the following equipment:

- Two (2) Waukesha L7042GSI 1480-bhp rich-burn spark ignition, natural gas fired engines, each equipped with a Waukesha Engine System Manager Air Fuel Ratio (ESM-AFR) controller and a Johnson Matthey QXH-80-T-CS-EI-12 (or equivalent) three-way catalyst.
- One (1) 40 MMscfd triethylene glycol dehydration unit with a 2.0 mmBtu/hr reboiler and equipped with flash tank, flash gas recycle/recompression, and a Superior Fabrication, Inc. 48" enclosed flare rated at 2.1MMBtu/hr for VOC/HAP emissions control (98% control efficiency).
- Four (4) 400-bbl condensate storage tanks controlled by vapor recovery unit (VRU).
- One (1) 500-bbl gun-barrel condensate tank controlled by VRU.

The enclosed document shall serve as written approval pursuant to 25 PA Code § 127.621, and is effective for a five (5) year period, commencing on the authorized date. A copy of the conditions of the GP-5 is enclosed for your reference. Your attention is particularly directed to requirements related to *commencement of construction notification*, *performance testing*, and *expiration and renewal of authorization*.

Pursuant to GP-5 Condition #2, you have requested as part of the referenced application that Federally enforceable emission restrictions, applicable to the sources specified herein, be established at this facility to limit the facility's Potential-to-Emit (PTE) in accordance with the specifications in the application. Upon receipt of authorization to construct and/or operate a

following Federally enforceable emission restrictions have been established at the facility: natural gas, coal bed methane. or gob gas production or recovery facility under this GP-5, the

Emission Rate		Pollutant		
(tpy)	(Jh/di)			
9.81	4.25	*ON		
6.7	£8°1	VOC (including HCHO)		
9'11	99'7			
82.0	<u> </u>	НСНО		
10.1	0.27	agah IsloT		
-	'ชื่อน	(202 sn) xO2		
<u>,85.0</u>	0.13	Particulate Matter (Filterable)		
	and a subscription of the			

Table 1—Facility.Wile DTG for the Swith Co

anigna rotatang baril-losob toq notimogo to stuan dov.a no pasasi

sas-fired engine at this facility: Additionally, the following emission restrictions have been established for each natural

Table 2-Federally Enforceable Emission Restrictions for Each Natural Gas Engine

	4	Enission Rat	ansiullo4	FDDW JUBDA
1.1	(10/101)	(m.duo/d)		
	99'0	2.0	×ON	122CLOL 1 adaption
	95.0	21.0	*JOV	1002P013 bileshopm
	28.0	52.0	00	(Chan I soning)
	0.03	10.0	ОНЭН	
				Includes formaldehyde (11CHO)

Condition #10, where: I wish to call your attention to terms and conditions applicable to your facility. You should read the entire document carefully; you are obligated to comply with all

applicable Federal, state and local laws and regulations." Its this view of the sensition of the permittee from the obligation to comply with all

Keciproculing Internal Combustion Engines (RICE). HH--Oll and Natural Gas Production Facilities, and Subpart ZZZZ-Stationary Emission Standards for Hazardous Air Pollutants (NESHAPS) under 40 CFR Part 63 Subpart Construction, Reconstruction, or Modification Commenced After July 23, 1984; National Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Onshore Natural Gas Processing Plants, Subpart Kb-Standards of Performance for Volatile Engines (ICE), Subpart KKK-Standards of Performance for Equipment Leaks of VOC From III)—Standards of Performance for Stationary Spark Ignition (SI) Internal Combustion not limited to, New Source Performance Standards (NSPS) under 40 CFR Part 60 Subpart Specific Federal regulations that may be applicable to sources at your facility include, but are

and/or operation is not in compliance with the terms and conditions of thereof. GP-5 may be suspended or revoked if the Department determines that, at any time, construction Please also note that any authorization by the Department to construct and/or operate under

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION SOUTHWEST REGION – FIELD OPERATIONS AIR QUALITY 400 WATERFRONT DRIVE PITTSBURGH, PENNSYLVANIA 15222-4745

GENERAL PLAN APPROVAL and/or GENERAL OPERATING PERMIT

In accordance with provisions of the Air Pollution Control Act, the Act of January 8, 1960, P.L. 2119, as amended, and after due consideration of an application received under Chapter 127 of the Rules and Regulations of the Department of Environmental Protection, the Department hereby approves the use of this permit for the operation of the air contamination sources(s) described below.

Authorization:	GP5-63-00968	Source(s):	(See Attached Letter)
Owner:	MarkWest Liberty Midstream & Resources, LLC Smith Compressor Station	Air: Cleaning: Devices:	(See Attached Letter)
Address:	1515 Arapahoe Street	Location:	Smith Twp
	Tower I, Suite 1600 Denver, Co 80202	County:	Washington
Attention:	Nathan Wheldon		
	Sr. Environmental Engineer		

This authorization is subject to the following conditions:

- 1. That the source and any associated air cleaning devices are to be:
 - a. Operated in such a manner as not to cause air pollution, as defined in 25 Pa Code § 121.1
 - b. Operated and maintained in a manner consistent with good operating and maintenance practices; and
 - c. Operated and maintained in accordance with the manufacturer's specifications, the specifications in the Application for Authorization, to Use GP5 and the applicable terms and conditions of the General Plan Approval and General Operating Permit (BAQ-GP/GP5.
- 2. This authorization is valid only for the source(s), air cleaning device(s), location, and owner named above.
- 3. See attached.

Failure to comply with the conditions placed on this authorization is a violation of Section 127.622. Violation of this or any other provision of Article III of the Rules and Regulations of the Department of Environmental Protection will result in suspension or revocation of this permit and/or prosecution under Section 9 of the Air Pollution Control Act.

Authorized: 3/20/2012

Mark A. Wayner, P.E.

Mark A. Wayner, P.E. Regional Program Manager Air Quality

AUTHORIZATION TERM: 3/20/2012 - 3/20/2017

Joseph McCuy

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board. Second Floor. Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483.

TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period.

Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION

Please feel free to contact me at 412-442-5231 (phone) or 412.442.4194 (fax) if you have any questions or need additional information.

Sincerely,

Devin P. Tomko Air Quality Engineering Specialist Air Quality Program

Enclosure

cc: 63-968